基于FPGA实现正弦插值算法
1、正弦插值的算法分析
1.1 信号在时域与频域的映射关系
在进行正弦算法分析之前,我们回顾一下《数字信号处理》课程中,对于信号在时域与频域之间的映射关系,如下图。


对于上图中的原始信号x(t),使用ADC对信号进行采样,即实现了时域信号的离散化,得到x[k]。根据时域与频域之间的映射关系:时域的离散化对应着频域的周期化,即x[k]的频域响应为。
那么离散化的x[k]如何还原为原来的x(t)呢?时域上分析较为复杂,我们可以从频域上进行分析,即如何将频域响应还原成X(jw)。这样就比较直观了,只需要截取
一个周期的信号,就可以还原成X(jw),示例如下图。

1.2 sinc函数
上面用到的窗函数,实际上是一个理想的低通滤波器,其时域形态是什么样子的呢?如下图。

其时域形态公式: ,sinc函数在频域上是一个矩形的方窗,如下图。

1.3 使用sinc函数实现正弦插值的算法分析
综上所述,对于我们可以使用sinc函数实现离散信号还原为连续信号,即使用sinc函数实现离散信号的无限插值。
而频域的乘积对应着时域的卷积,因此我们可以将离散的采样信号与sinc函数进行卷积运算,从而获得插值后的信号。
其中,y(n)为插值后信号;x(n)为待插值的离散信号;h(n)为sinc函数,也称为插值核或者插值因子。
假设有一个离散信号x(n),含有8个离散点,x(n)={-10,0,10,0,-10,0,10,0};如下图:

我们使用前后共计8个原始采样点,来求插值点x(0.5)的数值。套用上面描述的公式,即x(0.5)=x(-3)h(0.5-(-3)) + x(-2)h(0.5-(-2)) + x(-1)h(0.5-(-1)) + x(0)h(0.5-(0)) + x(1)h(0.5-(1)) + x(2)h(0.5-(2)) + x(3)h(0.5-(3)) =-6.3056,即求得插值点的数值。
根据这种思想,我们可以无限的求得每个插值点的数值。那么如何在工程也能够中使用sinc函数实现信号的插值,是我们接下来要讲述的。
2、使用matlab计算插值核
在使用FPGA实现插值算法时,由于sinc函数的计算实现起来比较消耗硬件资源,所以一般预先计算好插值核存放在ROM或者寄存器中,直接进行调用。
假设我们要使用前后8个点计算插值,插值倍数为10,那么使用matlab计算插值核的代码如下:
interp_mul = 10; %插值倍数为10
orig_point_num = 8;%原始点数8个coe_group = zeros(interp_mul,orig_point_num); %定义系数组
for group = 1:1:interp_mul %计算interp_mul组系数for Hn = 1:1:orig_point_num %计算每组系数的orig_point_num个加权值if(group == 1)if(Hn==4)coe_group(group,Hn) = 1; %原始点保持数据不变[0,0,0,1,0,0,0,0]elsecoe_group(group,Hn) = 0; %原始点保持数据不变[0,0,0,1,0,0,0,0]endelsecoe_group(group,Hn) = sinc(4- Hn + 0.1*(group-1));%找规律映射endend
end
运行结果保存在coe_group数组中,结果如下:

上述算法计算得到的插值核为小数,而FPGA计算小数运算时,需要现将数值左移相应位数进行放大,方便进行计算,输出结果时,截取高bit即可。由于后续FPGA实现卷积和时使用18bits的插值核进行运算,因此实际工程中的matlab代码如下:
interp_mul = 10; %插值倍数为10
orig_point_num = 8;%原始点数8个coe_group = zeros(interp_mul,orig_point_num); %定义系数组
for group = 1:1:interp_mul %计算interp_mul组系数for Hn = 1:1:orig_point_num %计算每组系数的orig_point_num个加权值if(group == 1)if(Hn==4)coe_group(group,Hn) = 1; %原始点保持数据不变[0,0,0,1,0,0,0,0]elsecoe_group(group,Hn) = 0; %原始点保持数据不变[0,0,0,1,0,0,0,0]endelsecoe_group(group,Hn) = sinc(4- Hn + 0.1*(group-1)) *2^17;%找规律映射,小数放大2^17倍endend
end
结果如下:

3、使用FPGA实现离散采样点的插值
本文中仅使用一个测试程序,说明FPGA实现插值的原理,结构相对简单,架构图如下:

离散采样RAM模块代码如下:
module disc_samp_gen(input clk,input disc_rd,//读待插值数据标志output [7:0] disc_samp //离散采样点输出 有符号数据);
reg [1:0]addra=0;always@(posedge clk)
beginif(disc_rd)addra <= addra + 1'b1;
endDataSrc_ROM DataSrc_ROM (.clka(clk), // input wire clka.addra(addra), // input wire [1 : 0] addra.douta(disc_samp) // output wire [7 : 0] douta
);endmodule
插值处理模块,主要通过乘法器实现卷积和,如下:
module sinc_process(input clk,input sinc_en,//插值使能标志input [7:0]disc_samp,//待插值数据,有符号数output disc_rd,//读取插值数据标志output sinc_valid,//插值数据有效标志output [7:0]sinc_data//插值后数据);
//插值倍数10,使用8个离散采样点进行插值处理
第0组插值核
//localparam [17:0] group0_coe[7:0] = {18'h0,18'h0,18'h0,18'h0,
// 18'h1FFFF,18'h0,18'h0,18'h0};//临时粗略将18'h1FFFF视为1
第1组插值核
//localparam [17:0] group1_coe[7:0] = {18'h3F317,18'h0115D,18'h3E57F,18'h037F5,
// 18'h1F79E,18'h3D238,18'h017FB,18'h3EFC2};
第2组插值核
//localparam [17:0] group2_coe[7:0] = {18'h3E6CB,18'h02236,18'h3CAC8,18'h077BE,
// 18'h1DEF8,18'h3B02C,18'h02B8A,18'h3E211};
第3组插值核
//localparam [17:0] group3_coe[7:0] = {18'h3DC5E,18'h030D5,18'h3B272,18'h0BC5B,
// 18'h1B77F,18'h39A94,18'h03953,18'h3D80C};
第4组插值核
//localparam [17:0] group4_coe[7:0] = {18'h3D4F2,18'h03B9D,18'h39F21,18'h10254,
// 18'h1837E,18'h3914A,18'h04095,18'h3D26A};
第5组插值核
//localparam [17:0] group5_coe[7:0] = {18'h3D170,18'h04130,18'h3935A,18'h145F3,
// 18'h145F3,18'h3935A,18'h04130,18'h3D170};
第6组插值核
//localparam [17:0] group6_coe[7:0] = {18'h3D26A,18'h04095,18'h3914A,18'h1837E,
// 18'h10254,18'h39F21,18'h03B9D,18'h3D4F2};
第7组插值核
//localparam [17:0] group7_coe[7:0] = {18'h3D80C,18'h03953,18'h39A94,18'h1B77F,
// 18'h0BC5B,18'h3B272,18'h030D5,18'h3DC5E};
第8组插值核
//localparam [17:0] group8_coe[7:0] = {18'h3E211,18'h02B8A,18'h3B02C,18'h1DEF8,
// 18'h077BE,18'h3CAC8,18'h02236,18'h3E6CB};
第9组插值核
//localparam [17:0] group9_coe[7:0] = {18'h3EFC2,18'h017FB,18'h3D238,18'h1F79E,
// 18'h037F5,18'h3E57F,18'h0115D,18'h3F317};//第0组插值核
localparam [17:0] group0_coe[7:0] = {18'h0,18'h0,18'h0,18'h1FFFF,18'h0,18'h0,18'h0,18'h0};//临时粗略将18'h1FFFF视为1
//第1组插值核
localparam [17:0] group1_coe[7:0] = {18'h3EFC2,18'h017FB,18'h3D238,18'h1F79E,18'h037F5,18'h3E57F,18'h0115D,18'h3F317};
//第2组插值核
localparam [17:0] group2_coe[7:0] = {18'h3E211,18'h02B8A,18'h3B02C,18'h1DEF8,18'h077BE,18'h3CAC8,18'h02236,18'h3E6CB};
//第3组插值核
localparam [17:0] group3_coe[7:0] = {18'h3D80C,18'h03953,18'h39A94,18'h1B77F,18'h0BC5B,18'h3B272,18'h030D5,18'h3DC5E};
//第4组插值核
localparam [17:0] group4_coe[7:0] = {18'h3D26A,18'h04095,18'h3914A,18'h1837E,18'h10254,18'h39F21,18'h03B9D,18'h3D4F2};
//第5组插值核
localparam [17:0] group5_coe[7:0] = {18'h3D170,18'h04130,18'h3935A,18'h145F3,18'h145F3,18'h3935A,18'h04130,18'h3D170};
//第6组插值核
localparam [17:0] group6_coe[7:0] = {18'h3D4F2,18'h03B9D,18'h39F21,18'h10254,18'h1837E,18'h3914A,18'h04095,18'h3D26A};
//第7组插值核
localparam [17:0] group7_coe[7:0] = {18'h3DC5E,18'h030D5,18'h3B272,18'h0BC5B,18'h1B77F,18'h39A94,18'h03953,18'h3D80C};
//第8组插值核
localparam [17:0] group8_coe[7:0] = {18'h3E6CB,18'h02236,18'h3CAC8,18'h077BE,18'h1DEF8,18'h3B02C,18'h02B8A,18'h3E211};
//第9组插值核
localparam [17:0] group9_coe[7:0] = {18'h3F317,18'h0115D,18'h3E57F,18'h037F5,18'h1F79E,18'h3D238,18'h017FB,18'h3EFC2};reg [17:0] sinc_coe [7:0];//对应插值点使用的插值核
reg [3:0] sinc_cnt = 0;//插值计数,0时为原始点,1~9为插值点,其余数值保留
reg [7:0] samp_data [7:0];//每次从RAM读取数据时进行锁存更新//8个乘法结果
reg [25:0] mult_data[7:0];assign disc_rd = (sinc_cnt == 4'd8) ? 1'b1:1'b0; //插值第8个点时,读取新的数据//插值倍数10,插值点计数
always@(posedge clk)
beginif(sinc_en == 1'b1) beginif(sinc_cnt == 4'd9) sinc_cnt <= 4'd0;elsesinc_cnt <= sinc_cnt + 1;endelsesinc_cnt <= 4'd0;
end
//原始点锁存
always@(posedge clk)
beginif(sinc_en == 1'b1 && sinc_cnt == 4'd0) begin //插值使能samp_data[0] <= disc_samp;//新输入的点samp_data[1] <= samp_data[0];samp_data[2] <= samp_data[1];samp_data[3] <= samp_data[2];samp_data[4] <= samp_data[3];samp_data[5] <= samp_data[4];samp_data[6] <= samp_data[5];samp_data[7] <= samp_data[6];end
end//插值核系数选择
always@(posedge clk)
begincase(sinc_cnt)4'd0:sinc_coe <= group0_coe;//原始点系数4'd1:sinc_coe <= group1_coe;//第1个插值点系数4'd2:sinc_coe <= group2_coe;//第2个插值点系数4'd3:sinc_coe <= group3_coe;//第3个插值点系数4'd4:sinc_coe <= group4_coe;//第4个插值点系数4'd5:sinc_coe <= group5_coe;//第5个插值点系数4'd6:sinc_coe <= group6_coe;//第6个插值点系数4'd7:sinc_coe <= group7_coe;//第7个插值点系数4'd8:sinc_coe <= group8_coe;//第8个插值点系数4'd9:sinc_coe <= group9_coe;//第9个插值点系数default:;endcase
end//乘法器0
mult_gen mult_gen_0 (.CLK(clk), // input wire CLK.A(samp_data[0]), // input wire [7 : 0] A.B(sinc_coe[0]), // input wire [17 : 0] B.P(mult_data[0]) // output wire [25 : 0] P
);//乘法器1
mult_gen mult_gen_1 (.CLK(clk), // input wire CLK.A(samp_data[1]), // input wire [7 : 0] A.B(sinc_coe[1]), // input wire [17 : 0] B.P(mult_data[1]) // output wire [25 : 0] P
);//乘法器2
mult_gen mult_gen_2 (.CLK(clk), // input wire CLK.A(samp_data[2]), // input wire [7 : 0] A.B(sinc_coe[2]), // input wire [17 : 0] B.P(mult_data[2]) // output wire [25 : 0] P
);//乘法器3
mult_gen mult_gen_3 (.CLK(clk), // input wire CLK.A(samp_data[3]), // input wire [7 : 0] A.B(sinc_coe[3]), // input wire [17 : 0] B.P(mult_data[3]) // output wire [25 : 0] P
);//乘法器4
mult_gen mult_gen_4 (.CLK(clk), // input wire CLK.A(samp_data[4]), // input wire [7 : 0] A.B(sinc_coe[4]), // input wire [17 : 0] B.P(mult_data[4]) // output wire [25 : 0] P
);//乘法器5
mult_gen mult_gen_5 (.CLK(clk), // input wire CLK.A(samp_data[5]), // input wire [7 : 0] A.B(sinc_coe[5]), // input wire [17 : 0] B.P(mult_data[5]) // output wire [25 : 0] P
);//乘法器6
mult_gen mult_gen_6 (.CLK(clk), // input wire CLK.A(samp_data[6]), // input wire [7 : 0] A.B(sinc_coe[6]), // input wire [17 : 0] B.P(mult_data[6]) // output wire [25 : 0] P
);//乘法器7
mult_gen mult_gen_7 (.CLK(clk), // input wire CLK.A(samp_data[7]), // input wire [7 : 0] A.B(sinc_coe[7]), // input wire [17 : 0] B.P(mult_data[7]) // output wire [25 : 0] P
);//使用加法器实现有符号数相加//二点相加
wire [25:0] add2_0;
wire [25:0] add2_1;
wire [25:0] add2_2;
wire [25:0] add2_3;
adder2 adder2_inst0 (.A(mult_data[0]), // input wire [25 : 0] A.B(mult_data[1]), // input wire [25 : 0] B.CLK(clk), // input wire CLK.S(add2_0) // output wire [26 : 0] S
);adder2 adder2_inst1 (.A(mult_data[2]), // input wire [25 : 0] A.B(mult_data[3]), // input wire [25 : 0] B.CLK(clk), // input wire CLK.S(add2_1) // output wire [26 : 0] S
);adder2 adder2_inst2 (.A(mult_data[4]), // input wire [25 : 0] A.B(mult_data[5]), // input wire [25 : 0] B.CLK(clk), // input wire CLK.S(add2_2) // output wire [26 : 0] S
);adder2 adder2_inst3 (.A(mult_data[5]), // input wire [25 : 0] A.B(mult_data[6]), // input wire [25 : 0] B.CLK(clk), // input wire CLK.S(add2_3) // output wire [26 : 0] S
);//四点相加
reg [25:0] add4_0;
reg [25:0] add4_1;
adder4 adder4_inst0 (.A(add2_0), // input wire [26 : 0] A.B(add2_1), // input wire [26 : 0] B.CLK(clk), // input wire CLK.S(add4_0) // output wire [27 : 0] S
);adder4 adder4_inst1 (.A(add2_2), // input wire [26 : 0] A.B(add2_3), // input wire [26 : 0] B.CLK(clk), // input wire CLK.S(add4_1) // output wire [27 : 0] S
);//八点相加
wire [25:0] add8;
adder8 adder8 (.A(add4_0), // input wire [26 : 0] A.B(add4_1), // input wire [26 : 0] B.CLK(clk), // input wire CLK.S(add8) // output wire [27 : 0] S
);assign sinc_valid = 1'b1;
assign sinc_data = add8[25:18];
endmodule
编写testbench,对插值模块进行仿真验证,testbench代码如下:
module testbench();
reg clk = 0; //100M时钟always
begin# 5clk <= ~clk;
endwire disc_rd;//采样点有效标志
wire [7:0] disc_samp; //离散采样点输出
disc_samp_gen disc_samp_gen(.clk(clk),.disc_rd(disc_rd),//采样点有效标志.disc_samp(disc_samp)//离散采样点输出);sinc_process sinc_process(.clk(clk),.sinc_en(1'b1),.disc_rd(disc_rd),//采样点有效标志.disc_samp(disc_samp),//离散采样点输出.sinc_valid(),//插值数据有效标志.sinc_data()//插值后数据);endmodule
仿真验证结果如下:

可以看到,图中黄色部分为原始采样点的直线连接波形,紫色部分为正弦插值后的波形。正弦插值仿真成功。
vivado工程以及学习sinc插值的过程文件(主要是为了存档,方便后续自己使用):https://download.csdn.net/download/yindq1220/87557975?spm=1001.2014.3001.5501
相关文章:
基于FPGA实现正弦插值算法
1、正弦插值的算法分析 1.1 信号在时域与频域的映射关系 在进行正弦算法分析之前,我们回顾一下《数字信号处理》课程中,对于信号在时域与频域之间的映射关系,如下图。 对于上图中的原始信号x(t),使用ADC对信号进行采样࿰…...
JavaWeb_会话技术
文章目录会话跟踪技术的概述Cookie概念Cookie工作流程Cookie基本使用发送Cookie获取CookieCookie原理分析Cookie的使用细节Cookie的存活时间Cookie存储中文SessionSession的基本使用概念工作流程Session的基本使用Session的原理分析Session的使用细节Session的钝化与活化Sessio…...
Reactor响应式流的核心机制——背压机制
响应式流是什么? 响应式流旨在为无阻塞异步流处理提供一个标准。它旨在解决处理元素流的问题——如何将元素流从发布者传递到订阅者,而不需要发布者阻塞,或订阅者有无限制的缓冲区或丢弃。 响应式流模型存在两种基本的实现机制。一种就是传统…...
[数据结构]栈的深入学习-java实现
CSDN的各位uu们你们好,今天千泽带来了栈的深入学习,我们会简单的用代码实现一下栈, 接下来让我们一起进入栈的神奇小世界吧!0.速览文章一、栈的定义1. 栈的概念2. 栈的图解二、栈的模拟实现三.栈的经典使用场景-逆波兰表达式总结一、栈的定义 1. 栈的概念 栈:一种…...
网络编程基础
1 互联网的本质硬件设备有了操作系统,然后装上软件之后我们就能够正常使用了,然后也只能自己使用。像这样,每个人都拥有一台自己的机器,然而彼此孤立。如何才能和大家一起愉快的玩耍?什么是网络?简单来说&a…...
华为OD机试题 - 数列还原(JavaScript)| 机考必刷
更多题库,搜索引擎搜 梦想橡皮擦华为OD 👑👑👑 更多华为OD题库,搜 梦想橡皮擦 华为OD 👑👑👑 更多华为机考题库,搜 梦想橡皮擦华为OD 👑👑👑 华为OD机试题 最近更新的博客使用说明本篇题解:数列还原题目输入输出示例一输入输出Code代码解析版权说明华为O…...
10-Oracle存储过程(创建,修改,使用及管理)
本章内容 1、我们为什么要用存储过程? 2、存储过程是如何定义和维护的? 3、我们如何调用存储过程? 4、存储过程中常用的复合数据处理方式及CTE 5、存储过程如何进行异常处理? 6、存储过程如何进行事务处理? 7、我们应如何优化存储过程? 1、我们为什么要用存储过程…...
创建线程的三种方法
文章目录1、创建一个类实现Runnable接口,并重写run方法。2、创建一个类继承Thread类,并重写run方法。3、实现Callable接口,重写call()方法,这种方式可以通过FutureTask获取任务执行的返回值。4、run()方法和start()方法有什么区别…...
第一章---Pytorch快速入门---第三节---pytorch中的数据操作和预处理
目录 1.高维数组 1.1 回归数据准备 1.2 分类数据准备 2. 图像数据 1.torchvision.datasets模块导入数据并预处理 2.从文件夹中导入数据并进行预处理 pytorch中torch.utils.data模块包含着一些常用的数据预处理的操作,主要用于数据的读取、切分、准备等。 常用…...
【代码随想录训练营】【Day38】第九章|动态规划|理论基础|509. 斐波那契数|70. 爬楼梯|746. 使用最小花费爬楼梯
理论基础 动态规划与贪心的区别并不是学习动态规划所必须了解的,所以并不重要。 想要了解动态规划算法题的特点,可以直接做下面三道入门简单题练练手感,找找感觉,很快就能体会到动态规划的解题思想。 总结成一句话就是…...
华为OD机试题 - 快递货车(JavaScript)| 机考必刷
更多题库,搜索引擎搜 梦想橡皮擦华为OD 👑👑👑 更多华为OD题库,搜 梦想橡皮擦 华为OD 👑👑👑 更多华为机考题库,搜 梦想橡皮擦华为OD 👑👑👑 华为OD机试题 最近更新的博客使用说明本篇题解:快递货车题目输入输出示例一输入输出Code解题思路版权说明华为O…...
前端——7.图像标签和路径
这篇文章,我们来讲解一下图像标签 目录 1.图像标签 1.1介绍 1.2实际展示 1.3图像标签的属性 1.3.1 alt属性 1.3.2 title属性 1.3.3 width / height 属性 1.3.4 border属性 1.4注意事项 2.文件夹 2.1目录文件夹和根目录 2.2 VSCode打开目录文件夹 3.路…...
java -- stream流
写在前面: stream流一直在使用,但是感觉还不够精通,现在深入研究一下。 stream这个章节中,会用到 函数式接口–lambda表达式–方法引用的相关知识 介绍 是jdk8引进的新特性。 stream流是类似一条流水线一样的操作,每次对数据进…...
【Spring6】| Bean的四种获取方式(实例化)
目录 一:Bean的实例化方式 1. 通过构造方法实例化 2. 通过简单工厂模式实例化 3. 通过factory-bean实例化 4. 通过FactoryBean接口实例化 5. BeanFactory和FactoryBean的区别(面试题) 6. 使用FactoryBean注入自定义Date 一:…...
01: 新手学SpringCloud前需知道的5点
目录 第一点: 什么是微服务架构 第二点:为什么需要学习Spring Cloud 第三点: Spring Cloud 是什么 第四点: SpringCloud的优缺点 1、SpringCloud优点 2、SpringCloud缺点 第五点: SpringCloud由什么组成 1&…...
ubuntu apt安装arm交叉编译工具
查找查找编译目标为32位的gcc-arm交叉编译器命令apt-cache search arm|awk index($1,"arm")!0 {print}|grep gcc-arm\|g-arm #或者 apt-cache search arm|awk index($1,"arm")!0 {print}|grep -E gcc-arm|g\\-arm输出如下g-arm-linux-gnueabihf - GNU C co…...
阿里云一面经历
文章目录 ES 查询方式都有哪些?1 基于词项的查询term & terms 查询Fuzzy QueryWildcard Query2 基于全文的查询Match QueryQuery String QueryMatch Phrase Query3 复合查询Bool QueryElasticsearch 删除原理ES 大文章怎么存arthas 常用命令arthas 排查问题过程arthas 工作…...
Java Stream中 用List集合统计 求和 最大值 最小值 平均值
对集合数据的统计,是开发中常用的功能,掌握好Java Stream提供的方法,避免自己写代码统计,可以提高工作效率。 先造点数据: pigs.add(new Pig(1, "猪爸爸", 31, "M", false)); pigs.add(new Pig(…...
【Linux】多线程---线程控制
进程在前面已经讲过了,所以这次我们来讨论一下多线程。前言:线程的背景进程是Linux中资源及事物管理的基本单位,是系统进行资源分配和调度的一个独立单位。但是实现进程间通信需要借助操作系统中专门的通信机制,但是只这些机制将占…...
秒杀高并发解决方案
秒杀高并发解决方案 1.秒杀/高并发方案-介绍 秒杀/高并发 其实主要解决两个问题,一个是并发读,一个是并发写并发读的核心优化理念是尽量减少用户到 DB 来"读"数据,或者让他们读更少的数据, 并 发写的处理原则也一样针对秒杀系统需…...
【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型
摘要 拍照搜题系统采用“三层管道(多模态 OCR → 语义检索 → 答案渲染)、两级检索(倒排 BM25 向量 HNSW)并以大语言模型兜底”的整体框架: 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后,分别用…...
云计算——弹性云计算器(ECS)
弹性云服务器:ECS 概述 云计算重构了ICT系统,云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台,包含如下主要概念。 ECS(Elastic Cloud Server):即弹性云服务器,是云计算…...
rknn优化教程(二)
文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK,开始写第二篇的内容了。这篇博客主要能写一下: 如何给一些三方库按照xmake方式进行封装,供调用如何按…...
反向工程与模型迁移:打造未来商品详情API的可持续创新体系
在电商行业蓬勃发展的当下,商品详情API作为连接电商平台与开发者、商家及用户的关键纽带,其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息(如名称、价格、库存等)的获取与展示,已难以满足市场对个性化、智能…...
通过Wrangler CLI在worker中创建数据库和表
官方使用文档:Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后,会在本地和远程创建数据库: npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库: 现在,您的Cloudfla…...
Docker 运行 Kafka 带 SASL 认证教程
Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明:server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...
STM32+rt-thread判断是否联网
一、根据NETDEV_FLAG_INTERNET_UP位判断 static bool is_conncected(void) {struct netdev *dev RT_NULL;dev netdev_get_first_by_flags(NETDEV_FLAG_INTERNET_UP);if (dev RT_NULL){printf("wait netdev internet up...");return false;}else{printf("loc…...
从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路
进入2025年以来,尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断,但全球市场热度依然高涨,入局者持续增加。 以国内市场为例,天眼查专业版数据显示,截至5月底,我国现存在业、存续状态的机器人相关企…...
Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务
通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...
Golang dig框架与GraphQL的完美结合
将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用,可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器,能够帮助开发者更好地管理复杂的依赖关系,而 GraphQL 则是一种用于 API 的查询语言,能够提…...
