当前位置: 首页 > news >正文

Apache Paimon系列之:Append Table和Append Queue

Apache Paimon系列之:Append Table和Append Queue

  • 一、Append Table
  • 二、Data Distribution
  • 三、自动小文件合并
  • 四、Append Queue
  • 五、压缩
  • 六、Streaming Source
  • 七、Watermark Definition
  • 八、Bounded Stream

一、Append Table

如果表没有定义主键,则默认为追加表。

您只能以流式方式将完整记录插入到表中。此类表适合不需要流式更新的用例(例如日志数据同步)。

CREATE TABLE my_table (product_id BIGINT,price DOUBLE,sales BIGINT
);

二、Data Distribution

默认情况下,append table没有bucket的概念。它的作用就像一个 Hive 表。数据文件放置在分区下,可以在其中重新组织和重新排序以加快查询速度。

三、自动小文件合并

在流式写入作业中,如果没有bucket定义,则writer中不会进行压缩,而是使用Compact Coordinator扫描小文件并将压缩任务传递给Compact Worker。在流模式下,如果在flink中运行insert sql,拓扑将是这样的:

在这里插入图片描述
不用担心反压,压实永远不会反压。

如果将 write-only 设置为 true,Compact Coordinator 和 Compact Worker 将在拓扑中删除。

自动压缩仅在 Flink 引擎流模式下支持。您还可以通过 paimon 中的 flink 操作在 flink 中启动压缩作业,并通过 set write-only 禁用所有其他压缩。

四、Append Queue

在这种模式下,您可以将append table视为一个由bucket分隔的队列。同一个桶中的每条记录都是严格排序的,流式读取会严格按照写入的顺序将记录传输到下游。使用此模式,不需要进行特殊配置,所有数据都会以队列的形式放入一个桶中。您还可以定义bucket和bucket-key以实现更大的并行性和分散数据。

在这里插入图片描述

CREATE TABLE my_table (product_id BIGINT,price DOUBLE,sales BIGINT
) WITH ('bucket' = '8','bucket-key' = 'product_id'
);

五、压缩

默认情况下,sink节点会自动进行compaction来控制文件数量。以下选项控制压缩策略:

KeyDefaultTypeDescription
write-onlyfalseBoolean如果设置为 true,将跳过压缩和快照过期。此选项与专用紧凑作业一起使用。
compaction.min.file-num5Integer对于文件集 [f_0,…,f_N],满足 sum(size(f_i)) >= targetFileSize 触发追加表压缩的最小文件号。该值避免了几乎完整的文件被压缩,这是不划算的。
compaction.max.file-num50Integer对于文件集 [f_0,…,f_N],触发追加表压缩的最大文件数,即使 sum(size(f_i)) < targetFileSize。该值可以避免挂起太多小文件,从而降低性能。
full-compaction.delta-commits(none)Integer增量提交后将不断触发完全压缩。

六、Streaming Source

目前仅 Flink 引擎支持流式源行为。

Streaming Read Order

对于流式读取,记录按以下顺序生成:

  • 对于来自两个不同分区的任意两条记录
    • 如果 scan.plan-sort-partition 设置为 true,则首先生成分区值较小的记录。
    • 否则,将先产生分区创建时间较早的记录。
  • 对于来自同一分区、同一桶的任意两条记录,将首先产生第一条写入的记录。
  • 对于来自同一分区但两个不同桶的任意两条记录,不同的桶由不同的任务处理,它们之间没有顺序保证。

七、Watermark Definition

您可以定义读取 Paimon 表的水印:

CREATE TABLE t (`user` BIGINT,product STRING,order_time TIMESTAMP(3),WATERMARK FOR order_time AS order_time - INTERVAL '5' SECOND
) WITH (...);-- launch a bounded streaming job to read paimon_table
SELECT window_start, window_end, COUNT(`user`) FROM TABLE(TUMBLE(TABLE t, DESCRIPTOR(order_time), INTERVAL '10' MINUTES)) GROUP BY window_start, window_end;

给定的代码创建了一个名为"t"的表,它包含了三个列:“user”(BIGINT类型),“product”(STRING类型),和"order_time"(TIMESTAMP类型,精确到毫秒)。它还为"order_time"列定义了一个水印(WATERMARK),表示事件的时间戳早于水印的事件被认为是延迟事件,可以被丢弃。

在创建表之后,该代码启动了一个有界的流作业来读取"t"表中的数据。它使用TUMBLE函数将数据按照"order_time"列分组为固定大小的滚动窗口,窗口大小为10分钟。window_start和window_end表示每个窗口的起始和结束时间戳,COUNT函数用于计算每个窗口内不同用户的数量。结果按照window_start和window_end进行分组。

您还可以启用 Flink Watermark 对齐,这将确保没有源/拆分/分片/分区将其水印增加得远远超出其他部分:

KeyDefaultTypeDescription
scan.watermark.alignment.group(none)String一组用于对齐水印的源。
scan.watermark.alignment.max-drift(none)Duration在我们暂停从源/任务/分区进行消耗之前,对齐水印的最大漂移。

八、Bounded Stream

Streaming Source 也可以是有界的,您可以指定 scan.bounded.watermark 来定义有界流模式的结束条件,流读取将结束,直到遇到更大的水印快照。

快照中的水印是由writer生成的,例如,您可以指定kafka源并声明水印的定义。当使用此kafka源写入Paimon表时,Paimon表的快照将生成相应的水印,以便您在流式读取此Paimon表时可以使用有界水印的功能。

CREATE TABLE kafka_table (`user` BIGINT,product STRING,order_time TIMESTAMP(3),WATERMARK FOR order_time AS order_time - INTERVAL '5' SECOND
) WITH ('connector' = 'kafka'...);-- launch a streaming insert job
INSERT INTO paimon_table SELECT * FROM kakfa_table;-- launch a bounded streaming job to read paimon_table
SELECT * FROM paimon_table /*+ OPTIONS('scan.bounded.watermark'='...') */;

这段代码包含了几个步骤:

  • 创建一个名为"kafka_table"的表,该表包含了三个列:“user”(BIGINT类型),“product”(STRING类型),和"order_time"(TIMESTAMP类型,精确到毫秒)。它还为"order_time"列定义了一个水印(WATERMARK),表示事件的时间戳早于水印的事件被认为是延迟事件,可以被丢弃。该表的连接器(connector)被指定为"kafka",意味着数据将从Kafka中读取。
  • 启动一个流式插入作业。这个作业将从"kafka_table"中选择所有的数据,并插入到名为"paimon_table"的表中。
  • 启动一个有界的流作业来读取"paimon_table"表中的数据。该作业将返回"paimon_table"表中的所有数据。注释中的"scan.bounded.watermark"选项可以指定有界流作业的水印,用于确定数据的处理范围。
  • 总的来说,这段代码创建了一个从Kafka读取数据的表,并通过流式插入将数据插入到另一个表中。然后,通过有界流作业从目标表中读取数据。

相关文章:

Apache Paimon系列之:Append Table和Append Queue

Apache Paimon系列之&#xff1a;Append Table和Append Queue 一、Append Table二、Data Distribution三、自动小文件合并四、Append Queue五、压缩六、Streaming Source七、Watermark Definition八、Bounded Stream 一、Append Table 如果表没有定义主键&#xff0c;则默认为…...

Vue使用vue-esign实现在线签名 加入水印

Vue在线签名 一、目的二、样式三、代码1、依赖2、代码2.1 在线签名组件2.1.1 基础的2.1.2 携带时间水印的 2.2父组件 一、目的 又来了一个问题&#xff0c;直接让我在线签名&#xff08;还不能存储base64&#xff09;&#xff0c;并且还得上传&#xff0c;我直接***违禁词。 好…...

与码无关:分数限制下,选好专业还是选好学校?

本文的目标读者&#xff1a;24届的高考生和家长。 写这篇非技术性文章&#xff0c;是因为我看到了24届考生和21年的我同样迷茫。 事先声明&#xff0c;本文带有强烈的个人思考色彩&#xff0c;可能会引起不适&#xff0c;如有不同观点&#xff0c;欢迎在评论区讨论。 一、前言…...

什么是负载均衡技术?

随着网络技术的快速发展&#xff0c;互联网行业也越来越广泛&#xff0c;人们的日常生活中也离不开网络技术&#xff0c;大量的用户进行浏览访问网站时&#xff0c;企业会使用负载均衡技术&#xff0c;降低当前网站的负载&#xff0c;以此来提高网站的访问速度。 今天小编就来给…...

存在重复元素Ⅱ python3

存在重复元素Ⅱ 问题描述解题思路代码实现复杂度 问题描述 给你一个整数数组 nums 和一个整数 k &#xff0c;判断数组中是否存在两个 不同的索引 i 和 j &#xff0c;满足 nums[i] nums[j] 且 abs(i - j) < k 。如果存在&#xff0c;返回 true &#xff1b;否则&#xff…...

【CV炼丹师勇闯力扣训练营 Day13:§6二叉树1】

CV炼丹师勇闯力扣训练营 代码随想录算法训练营第13天 二叉树的递归遍历 二叉树的迭代遍历、统一迭代 二叉树的层序遍历 一、二叉树的递归遍历&#xff08;深度优先搜索&#xff09; 【递归步骤】 1.确定递归函数的参数和返回值&#xff1a;确定哪些参数是递归的过程中需要处理…...

代码随想录算法训练营第46天 [ 121. 买卖股票的最佳时机 122.买卖股票的最佳时机II 123.买卖股票的最佳时机III ]

代码随想录算法训练营第46天 [ 121. 买卖股票的最佳时机 122.买卖股票的最佳时机II 123.买卖股票的最佳时机III ] 一、121. 买卖股票的最佳时机 链接: 代码随想录. 思路&#xff1a;dp[i][0] 第i天持有股票的最大利润 dp[i][1] 第i天不持有股票的最大利润 做题状态&#xff1a;…...

基于IDEA的Maven简单工程创建及结构分析

目录 一、用 mvn 命令创建项目 二、用 IDEA 的方式来创建 Maven 项目。 &#xff08;1&#xff09;首先在 IDEA 下的 Maven 配置要已经确保完成。 &#xff08;2&#xff09;第二步去 new 一个 project &#xff08;创建一个新工程&#xff09; &#xff08;3&#xff09;…...

解锁空间数据奥秘:ArcGIS Pro与Python双剑合璧,处理表格数据、矢量数据、栅格数据、点云数据、GPS数据、多维数据以及遥感云平台数据等

ArcGISPro提供了用户友好的图形界面&#xff0c;适合初学者快速上手进行数据处理和分析。它拥有丰富的工具和功能&#xff0c;支持各种数据格式的处理和分析&#xff0c;适用于各种规模的数据处理任务。ArcGISPro在地理信息系统&#xff08;GIS&#xff09;领域拥有广泛的应用&…...

后端路线指导(4):后端春招秋招经验分享

后端春招&秋招经验分享 春招(暑期实习) /秋招是应届生非常重要的应聘时间,每一个想就业的同学一定要有所了解! 本篇内容&#xff0c;老白将与大家分享暑期实习和秋招如何应对招聘的个人经验&#xff0c;希望每个同学看完都能有所收获! 首先说明一下老白对于面试核心竞争力的…...

面完小红书算法岗,心态崩了。。。

暑期实习基本结束了&#xff0c;校招即将开启。 不同以往的是&#xff0c;当前职场环境已不再是那个双向奔赴时代了。求职者在变多&#xff0c;HC 在变少&#xff0c;岗位要求还更高了。提前准备才是完全之策。 最近&#xff0c;我们又陆续整理了很多大厂的面试题&#xff0c…...

Android 断点续传进阶之多线程下载

今天继续下载的风骚走位内容—多线程多文件断点续传 Android 断点续传基础之单线程下载&#xff1a;http://blog.csdn.net/qq_27489007/article/details/53897653 效果图&#xff1a; 文件关系&#xff1a; 所需内容 多文件下载列表的显示 启动多个线程分段下载 使用通知栏…...

Python爬虫学习 | Scrapy框架详解

一.Scrapy框架简介 何为框架&#xff0c;就相当于一个封装了很多功能的结构体&#xff0c;它帮我们把主要的结构给搭建好了&#xff0c;我们只需往骨架里添加内容就行。scrapy框架是一个为了爬取网站数据&#xff0c;提取数据的框架&#xff0c;我们熟知爬虫总共有四大部分&am…...

用户态协议栈05—架构优化

优化部分 添加了in和out两个环形缓冲区&#xff0c;收到数据包后添加到in队列&#xff1b;经过消费者线程处理之后&#xff0c;将需要发送的数据包添加到out队列。添加数据包解析线程&#xff08;消费者线程&#xff09;&#xff0c;架构分层 #include <rte_eal.h> #inc…...

模拟退火算法

模拟退火算法&#xff08;Simulated Annealing, SA&#xff09;是一种用于全局优化问题的概率搜索算法&#xff0c;其灵感来自于金属退火过程。在金属退火中&#xff0c;材料被加热到高温&#xff0c;然后缓慢冷却&#xff0c;以减少其晶格中的缺陷并达到最小能量状态。模拟退火…...

Java匿名类

Java 匿名类是一种特殊的内部类&#xff0c;它没有名字&#xff0c;并且通常用来简化代码实现&#xff0c;尤其是在实现接口或者抽象类的实例时。匿名类可以在实例化时定义其行为&#xff0c;而不需要创建单独的类文件。 匿名类的特点 没有名字&#xff1a;匿名类是没有名字的…...

G7易流赋能化工物流,实现安全、环保与效率的共赢

近日&#xff0c;中国物流与采购联合会在古都西安举办了备受瞩目的第七届化工物流安全环保发展论坛。以"坚守安全底线&#xff0c;追求绿色发展&#xff0c;智能规划化工物流未来"为主题&#xff0c;该论坛吸引了众多政府部门、行业专家和企业代表的参与。G7易流作为…...

y=sin(2x)

函数 \( y \sin(2x) \) 是一个正弦函数&#xff0c;其中 \( x \) 是自变量&#xff0c;\( y \) 是因变量。这个函数描述了一个周期性波动的波形&#xff0c;其特点是&#xff1a; 1. **振幅**&#xff1a;正弦函数的振幅是 1&#xff0c;这意味着波形在 \( y \) 轴上的最大值…...

快捷方式(lnk)--加载HTA-CS上线

免责声明:本文仅做技术交流与学习... 目录 CS: HTA文档 文件托管 借助mshta.exe突破 本地生成lnk快捷方式: 非系统图标路径不同问题: 关于lnk的上线问题: CS: HTA文档 配置监听器 有效载荷---->HTA文档--->选择监听器--->选择powershell模式----> 默认生成一…...

从同—视角理解扩散模型(Understanding Diffusion Models A Unified Perspective)

从同—视角理解扩散模型 Understanding Diffusion Models A Unified Perspective【全公式推导】【免费视频讲解】 B站视频讲解 视频的论文笔记 从同一视角理解扩散模型【视频讲解笔记】 配合视频讲解的同步笔记。 整个系列完整的论文笔记内容如下&#xff0c;仅为了不用—一回复…...

docker 基本用法及跨平台使用

一、Docker的优点 docker 主要解决的问题就是程序开发过程中编译和部署中遇到的环境配置的问题。 1.1 Docker与其他虚拟机层次结构的区别** 运行程序重点关注点在于环境。 VM虚拟机是基于Hypervisor虚拟化服务运行的。 Docker是基于内核的虚拟化技术实现的。 1.2 Docker的技…...

Vscode远程ubuntu

远程连接 到这里vscode远程到ubuntu和关闭远程连接&#xff0c;已完成 配置python环境 在远程目录下新建.vscode隐藏文件夹&#xff0c;文件夹里新建一个 settings.json 文件&#xff0c; 先远程服务器看下conda下的python虚拟环境位置 settings.json位置及内容如下 测试pyt…...

SHA256 安全散列算法加速器实验

1、SHA256 介绍 SHA256 加速器是用来计算 SHA-256 的计算单元&#xff0c; SHA256 是 SHA-2 下细分出的一种算法。 SHA-2 名称来自于安全散列算法 2 &#xff08;英语&#xff1a; Secure Hash Algorithm 2 &#xff09;的缩写&#xff0c;一种密码散列函 数算法标准…...

Elasticsearch-ES查询单字段去重

ES 语句 整体数据 GET wkl_test/_search {"query": {"match_all": {}} }结果&#xff1a; {"took" : 123,"timed_out" : false,"_shards" : {"total" : 1,"successful" : 1,"skipped" : 0…...

【Apache Doris】周FAQ集锦:第 7 期

【Apache Doris】周FAQ集锦&#xff1a;第 7 期 SQL问题数据操作问题运维常见问题其它问题关于社区 欢迎查阅本周的 Apache Doris 社区 FAQ 栏目&#xff01; 在这个栏目中&#xff0c;每周将筛选社区反馈的热门问题和话题&#xff0c;重点回答并进行深入探讨。旨在为广大用户和…...

EE trade:炒伦敦金的注意事项及交易指南

在贵金属市场中&#xff0c;伦敦金因其高流动性和全球认可度&#xff0c;成为广大投资者的首选。然而&#xff0c;在炒伦敦金的过程中&#xff0c;投资者需要注意一些关键点。南华金业小编带您一起来看看。 国际黄金报价 一般国际黄金报价会提供三个价格&#xff1a; 买价(B…...

JAVA医院绩效考核系统源码 功能特点:大型医院绩效考核系统源码

JAVA医院绩效考核系统源码 功能特点&#xff1a;大型医院绩效考核系统源码 医院绩效管理系统主要用于对科室和岗位的工作量、工作质量、服务质量进行全面考核&#xff0c;并对科室绩效工资和岗位绩效工资进行核算的系统。医院绩效管理系统开发主要用到的管理工具有RBRVS、DRGS…...

Python神经影像数据的处理和分析库之nipy使用详解

概要 神经影像学(Neuroimaging)是神经科学中一个重要的分支,主要研究通过影像技术获取和分析大脑结构和功能的信息。nipy(Neuroimaging in Python)是一个强大的 Python 库,专门用于神经影像数据的处理和分析。nipy 提供了一系列工具和方法,帮助研究人员高效地处理神经影…...

非关系型数据库NoSQL数据层解决方案 之 Mongodb 简介 下载安装 springboot整合与读写操作

MongoDB 简介 MongoDB是一个开源的面向文档的NoSQL数据库&#xff0c;它采用了分布式文件存储的数据结构&#xff0c;是当前非常流行的数据库之一。 以下是MongoDB的主要特点和优势&#xff1a; 面向文档的存储&#xff1a; MongoDB是一个面向文档的数据库管理系统&#xff0…...

使用Redis优化Java应用的性能

使用Redis优化Java应用的性能 大家好&#xff0c;我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编&#xff0c;也是冬天不穿秋裤&#xff0c;天冷也要风度的程序猿&#xff01;今天我们来探讨如何使用Redis优化Java应用的性能。Redis是一种开源的内存数据结构…...

无锡专业做网站的/网站批量查询工具

摘自http://www.2cto.com/os/201404/296364.html&#xff08;原文请关注&#xff09;这几天在centos下装mysql&#xff0c;这里记录一下安装的过程&#xff0c;方便以后查阅 Mysql5.5.37安装须要cmake&#xff0c;5.6版本号開始都须要cmake来编译&#xff0c;5.5以后的版本号应…...

承德公司网站建设/百度官方网站网址是多少

关于connect: network is unreachable 问题的解决【转】参考文章&#xff1a; &#xff08;1&#xff09;关于connect: network is unreachable 问题的解决【转】 &#xff08;2&#xff09;https://www.cnblogs.com/zzb-Dream-90Time/p/9002465.html 备忘一下。...

企业网站开发制作/免费培训机构

有时候我们需要在程序中执行另一个程序的安装&#xff0c;这就需要我们去自定义 msi 安装包的执行过程。需求比如我要做一个安装管理程序&#xff0c;可以根据用户的选择安装不同的子产品。当用户选择了三个产品时&#xff0c;如果分别显示这三个产品的安装交互 UI 显然是不恰当…...

烟台搭建网站建设制作/怎样做关键词排名优化

现在很多的朋友都应该见过VR全景&#xff0c;但是不知道VR全景具体是什么&#xff1f;是怎么做的&#xff1f;有什么作用&#xff1f;今天小粉就给大家说一下。VR全景是当今最新颖的宣传展示的手段&#xff0c;代表了科技的更进一步&#xff0c;随着5G的发展&#xff0c;VR全景…...

上海发布微博/谷歌seo服务

有个老师叫我和师姐参加他的项目&#xff0c;不知道能不能申请下来&#xff0c;如果申请下来&#xff0c;涉及到模型求解的那一块&#xff0c;是我和师姐的工作。他说是我们的强项&#xff0c;实际上我觉得我什么都不会&#xff0c;优化理论我都不懂&#xff0c;之前老师上课我…...

wordpress文字加边框/芜湖seo

9、多事件 图9.1:多事件的应用 我们可以使用多个事件(图9.1)用一个符号总结几个事件&#xff0c;语义很简单: 如果我们将多个事件建模为捕获事件&#xff0c;那么只有一个汇总的事件才能启动或继续流程或取消任务。 如果我们将多个事件建模为抛出事件&#xff0c;这意味着将…...