当前位置: 首页 > news >正文

Matlab傅里叶谱方法求解一维波动方程

傅里叶谱方法求解基本偏微分方程—一维波动方程

一维波动方程

对于一根两端固定、没有受到任何外力的弦, 若只研究其中的一段, 在不太长的时间 里, 固定端来不及对这段弦产生影响, 则可以认为固定端是不存在的, 弦的长度为无限大。 这种无界 (−∞<x<∞)(-\infty<x<\infty)(<x<) 弦的自由振动由式 (1)(1)(1) 描述。
∂2u∂t2=a2∂2u∂x2(1)\frac{\partial^2 u}{\partial t^2}=a^2 \frac{\partial^2 u}{\partial x^2} \tag{1} t22u=a2x22u(1)
如果保证数值计算的区间足够大, 在一定时间内, 弦的振动范围始终没有超出计算区间 (或可以近似地这么认为), 那么就能够放心地使用周期性边界条件。取 a=1a=1a=1, 初始 条件为:
uut=0=2sech⁡(x),∂u∂t∣t=0=0(2)u u_{t=0}=2 \operatorname{sech}(x),\left.\quad \frac{\partial u}{\partial t}\right|_{t=0}=0 \tag{2} uut=0=2sech(x),tut=0=0(2)
在数学物理方法中, 无界弦的自由振动可由行波法求出解析解, 即达朗贝尔公式。 根据达朗贝尔公式, 从 t=0t=0t=0 开始, uuu 的初始状态 2sech⁡(x)2 \operatorname{sech}(x)2sech(x) 将分裂为两个 sech 形的波, 分别向两边以速度 aaa 传播出去, 即正行波和反行波。下面用傅里叶缙方法求解无界弦 的自由振动问题, 并与达朗贝尔公式的预测进行比较。首先引入函数 vvv 对式 (1)(1)(1) 进行降阶:
{∂u∂t=v∂v∂t=a2∂2u∂x2(3)\left\{\begin{array}{l} \frac{\partial u}{\partial t}=v \\ \frac{\partial v}{\partial t}=a^2 \frac{\partial^2 u}{\partial x^2} \end{array}\right. \tag{3} {tu=vtv=a2x22u(3)
对上式等号两边做傅里叶变换, 化为偏微分方程组:
{∂u^∂t=v^∂v^∂t=−a2k2u^(4)\left\{\begin{array}{l} \frac{\partial \hat{u}}{\partial t}=\hat{v} \\ \frac{\partial \hat{v}}{\partial t}=-a^2 k^2 \hat{u} \end{array}\right. \tag{4} {tu^=v^tv^=a2k2u^(4)

这样就可以用 ode45 求解了, 详细代码如下:

主程序代码如下:

clear all; close all;L=80;N=256;
x=L/N*[-N/2:N/2-1];
k=(2*pi/L)*[0:N/2-1 -N/2:-1].';
% 初始条件
u=2*sech(x);ut=fft(u);
vt=zeros(1,N);uvt=[ut vt];
% 求解
a=1;t=0:0.5:20;
[t,uvtsol]=ode45('wave1D',t,uvt,[],N,k,a);
usol=ifft(uvtsol(:,1:N),[],2);
% 画图
p=[1 11 21 41];
for n=1:4subplot(5,2,n)plot(x,usol(p(n),:),'k','LineWidth',1.5),xlabel x,ylabel utitle(['t=' num2str(t(p(n)))]),axis([-L/2 L/2 0 2])
end
subplot(5,2,5:10)
waterfall(x,t,usol),view(10,45)
xlabel x,ylabel t,zlabel u,axis([-L/2 L/2 0 t(end) 0 2])

文件 wave1D.m 代码如下:

function duvt=wave1D(t,uvt,dummy,N,k,a)
ut=uvt(1:N);vt=uvt(N+[1:N]);
duvt=[vt;-a^2*(k).^2.*ut];
end

计算结果如图所示, 初始状态的波形分裂成两半, 并分别向 xxx 轴正方向和负方向 以速度 aaa 运动, 这和达朗贝尔公式给出的结论是一致的。
一维波动方程的行波解

相关文章:

Matlab傅里叶谱方法求解一维波动方程

傅里叶谱方法求解基本偏微分方程—一维波动方程 一维波动方程 对于一根两端固定、没有受到任何外力的弦, 若只研究其中的一段, 在不太长的时间 里, 固定端来不及对这段弦产生影响, 则可以认为固定端是不存在的, 弦的长度为无限大。 这种无界 (−∞<x<∞)(-\infty<x&…...

py3中 collections.Counter()函数典型例题

文章目录py3中 collections 的常用STL**Counter()** 函数**defaultdict()** 函数**deque()** 函数**orderedDict()** 函数&#xff08;缺例题&#xff09;小结py3中 collections 的常用STL 对于这个工具包非常好用&#xff0c;尤其是其中的 Counter() 函数 使用次数颇为频繁&a…...

Linux部署达梦数据库超详细教程

陈老老老板&#x1f9b8;&#x1f468;‍&#x1f4bb;本文专栏&#xff1a;国产数据库-达梦数据库&#x1f468;‍&#x1f4bb;本文简述&#xff1a;本文讲一下达梦数据库的下载与安装教程&#xff08;Linux版&#xff09;&#xff0c;超级详细。&#x1f468;‍&#x1f4bb…...

ctfshow 每周大挑战 极限命令执行

《简单的命令执行题目》 这里感叹一下&#xff0c;g4佬是真好厉害&#xff0c;这次题目十分的难&#xff0c;嗯&#xff0c;对我这种菜鸡来说是这样的&#xff0c;想了一天&#xff0c;最后结束了&#xff0c;也还是没有想明白第五题的解法&#xff0c;我真是fw&#xff0c;到最…...

使用vue3,vite,less,flask,python从零开始学习硅谷外卖(16-40集)

严正声明&#xff01; 重要的事情说一遍&#xff0c;本文章仅供分享&#xff0c;文章和代码都是开源的&#xff0c;严禁以此牟利&#xff0c;严禁侵犯尚硅谷原作视频的任何权益&#xff0c;我知道学习编程的人各种各样的心思都有&#xff0c;但这不是你对开源社区侵权的理由&am…...

坚持就是胜利

很多朋友&#xff0c;可能坚持了多年的同等学力申硕考试&#xff0c;依然没有通过。如果你感到困惑&#xff0c;感到迷茫&#xff0c;要坚信&#xff1a;坚持就能胜利。有很多人跟你一样&#xff0c;一直坚持在路上&#xff0c;没有停止脚步。 生活没有你想象的那么好&#xff…...

代码中出现转置 pose (c2w,外参矩阵) 或者转置 intrinsic (内参)矩阵的原因

在代码中见到 pose&#xff08;c2w&#xff09;&#xff0c;intrinsic 矩阵的转置&#xff0c;觉得比较奇怪。 后来想了一下为什么。下面解释一下&#xff1a; 用 c2w 矩阵举例子。理论上&#xff0c;一个 c2w 左乘上 一个相机坐标系下的点 P的坐标&#xff0c;能够得到该点在…...

2023 年腾讯云服务器配置价格表出炉(2核2G/2核4G/4核8G/8核16G、16核32G)

腾讯云轻量应用服务器为轻量级的云服务器&#xff0c;使用门槛低&#xff0c;按套餐形式购买&#xff0c;轻量应用服务器套餐自带的公网带宽较大&#xff0c;4M、6M、7M、10M、14M及20M套餐可选&#xff0c;如果是云服务器CVM这个带宽价格就要贵很多了。 1、轻量应用服务器优惠…...

相机出图画面一半清晰,一半模糊的原因是什么?

1、问题背景&#xff1a;在做项目的过程中&#xff0c;有遇到过几次&#xff0c;出图后画面是一半清晰&#xff0c;一半模糊的现象&#xff0c;再重新对焦也是一样。但换了个镜头后就好了&#xff0c;这应该是镜头的质量问题&#xff0c;但导致镜头出现这种问题的具体原因是什么…...

Rust学习入门--【4】Rust 输出到命令行

Rust 语言中的打印“函数” 学习新的编程语言时&#xff0c;大家都喜欢打印“Hello World”。 在Rust中怎样将字符串打印出来呢&#xff1f; Rust 输出文字的方式主要有两种&#xff1a;println!() 和 print!()。 “函数”差异说明&#xff1a; 这两个"函数"都是向…...

Vector刷写方案—vFlash工具介绍

我是穿拖鞋的汉子,魔都中坚持长期主义的工科男! 今天魔都天气是连阴雨,滴滴答答的下个不停,心情也跟着潮湿起来!老规矩分享一段喜欢的文字,避免成为高知识低文化的工程师: 即使在真正的困境里,也一直提示自己,每次自恋不得超过十分钟! 那些看似无法度过得困境,不是…...

【阶段总结】《非结构化信息分析应用与实践(筹)》

《非结构化信息分析应用与实践&#xff08;筹&#xff09;》Part 1.知识储备一、机器学习 1.几种常见的有监督学习算法 2.几种常见的无监督学习算法 3.数据挖掘基础知识 30 问 二、神经网络与深度学习 1.MP神经网络模型&#xff08;附实例代码讲解&#xff09; 2.图解LST…...

七大设计原则之迪米特法则应用

目录1 迪米特法则介绍2 迪米特法则应用1 迪米特法则介绍 迪米特原则&#xff08;Law of Demeter LoD&#xff09;是指一个对象应该对其他对象保持最少的了解&#xff0c;又叫最少知 道原则&#xff08;Least Knowledge Principle,LKP&#xff09;&#xff0c;尽量降低类与类之…...

curl命令用法精简整理

目录1.GET请求1.1 形式1&#xff1a;1.2 形式2&#xff1a;2.POST请求2.1 无入参&#xff1a;2.2 form传参&#xff08;文件&#xff09;&#xff1a;2.3 json入参&#xff1a;2.4 json文件入参&#xff1a;3.请求计时3.1 time命令&#xff08;Linux&#xff09;&#xff1a;3.…...

Fluent Python 笔记 第 5 章 一等函数

在 Python 中&#xff0c;函数是一等对象。编程语言理论家把“一等对象”定义为满足下述条件的程 序实体: 在运行时创建能赋值给变量或数据结构中的元素 • 能作为参数传给函数能作为函数的返回结果 5.1 把函数视作对象 会用 map。 5.2 高阶函数 接受函数为参数&#xff0…...

卡尔曼滤波器与DSP实现

卡尔曼滤波器是利用系统状态方程&#xff0c;结合测量结果对系统状态进行进行最优估计的算法。本文介绍它的主要公式&#xff0c;并举例在C6000 DSP上实现。 推荐资料 KalmanFilter.NETUnderstanding Kalman Filters卡尔曼滤波与组合导航原理 “If you can’t explain it sim…...

引入QQ邮箱发送验证码进行安全校验

最近想给自己的项目在注册时加点安全校验&#xff0c;本想着使用短信验证码&#xff0c;奈何囊中羞涩只能退而求次改用QQ邮箱验证注册~ 一.需求分析 场景&#xff1a;用户输入自己的邮箱&#xff0c;点击获取验证码&#xff0c;后台会发送一封邮件到对应邮箱中。 分析&#x…...

【c++】数组

文章目录一维数组定义方式数组名案例案例1&#xff1a;元素逆置案例2&#xff1a;冒泡排序二维数组定义方式数组名案例&#xff1a;考试成绩统计数组特点&#xff1a; 1、每个数据元素放在一块连续的内存空间中&#xff1b; 2、数组中每个数据元素都是相同数据类型&#xff1b;…...

线程池的简单实现:Java线程池初学者必读指南

"作为一名Java开发者&#xff0c;是否曾经遇到过多线程并发的问题&#xff1f;线程数量过多时&#xff0c;会导致资源浪费&#xff0c;应用性能下降&#xff0c;甚至发生线程死锁的情况。那么&#xff0c;有没有一种方法可以有效地管理线程&#xff0c;避免这些问题呢&…...

【C#】[带格式的字符串] 复合格式设置字符串与使用 $ 的字符串内插 | 如何格式化输出字符串

复合格式输出 string name "Fred"; String.Format("Name {0}, hours {1:hh}", name, DateTime.Now);通过指定相同的参数说明符&#xff0c;多个格式项可以引用对象列表中的同一个元素。 例如&#xff0c;通过指定“0x{0:X} {0:E} {0:N}”等复合格式字符…...

Lecture4 反向传播(Back Propagation)

目录 1 问题背景 1.1计算图&#xff08;Computational Graph&#xff09; 1.2 激活函数&#xff08;Activation Function&#xff09;引入 1.3 问题引入 2 反向传播&#xff08;Back Propagation&#xff09; 2.1 为什么要使用反向传播 2.2 前馈运算(Forward Propagation…...

Power BI 筛选器函数---Window实例详解

一、Window函数 语法&#xff1a; Window ( <起始位置>,<起始位置类型>,<结束位置>,<结束位置类型>, [<关系>], [<OrderBy>],[空白],[PartitionBy] ) 含义&#xff1a; 对指定分区&#xff08;PartitioinBy)中的行&#xff08;关系表&…...

基础篇—如何创建css样式表,并集成到html文件中?

CSS 创建 HTML相当于一个页面的结构,CSS相当于页面的装饰,浏览器当读到一个样式表时,浏览器会根据它来格式化 HTML 文档。 如何插入样式表 插入样式表的方法有三种: 外部样式表(External style sheet)内部样式表(Internal style sheet)内联样式(Inline style)1、外…...

WindowsServer服务器系列:部署FTP文件服务

1、点击“开始”菜单&#xff0c;选择“服务器管理器” 2、在接下来弹出页面中选择“添加角色和功能” 3、接下来点击“下一步” 4、接下来选择“基于角色或基于功能的安装”并点击“下一步” 5、选择“从服务器池中选择服务器”并点击“下一步” 6、接下来选中“Web 服务器(II…...

华为OD机试 - 数字加减游戏(Python)| 真题+思路+代码

数字加减游戏 题目 小明在玩一个数字加减游戏,只使用加法或者减法,将一个数字 s 变成数字 t。 每个回合,小明可以用当前的数字加上或减去一个数字。 现在有两种数字可以用来加减,分别为 a,b(a!=b),其中 b 没有使用次数限制。 请问小明最少可以用多少次 a,才能将数字 s …...

【c/c++】c语言的自增操作在不同编译器的差别

示例代码 代码如下&#xff1a; #include <stdio.h>#define product(x) ((x)*(x))int main(void) {int i 3, j, k;j product(i); // (i) * (i)k product(i); // (i) * (i)printf("%d %d\n", j, k); }执行结果 在Ubuntu18.04下通过GCC编译和执行的结果…...

【LeetCode第 332 场周赛】

传送门 文章目录6354. 找出数组的串联值6355. 统计公平数对的数目6356. 子字符串异或查询6357. 最少得分子序列6354. 找出数组的串联值 题目 思路 前后指针 代码 class Solution { public:long long findTheArrayConcVal(vector<int>& nums) {long long res 0;i…...

【蓝桥杯单片机】Keil5中怎么添加STC头文件;从烧录软件中添加显示添加成功后新建工程时依旧找不到

蓝桥杯单片机的芯片型号&#xff1a;IAP15F2K61S2 添加头文件&#xff1a;STC15F2K60S2.H 【1】如何通过烧录软件添加STC头文件&#xff1a; 从ATC-ISP的Keil仿真设置中添加&#xff08;同时自动下载仿真驱动&#xff09;仔细阅读添加说明 KEIL5添加STC芯片库_Initdev的博客-…...

图解浏览器渲染页面详细过程

渲染详细过程 产生渲染任务&#xff0c;开启渲染流程 当浏览器的网络线程收到 HTML 文档后&#xff0c;会产生一个渲染任务&#xff0c;并将其传递给渲染主线程的消息队列。 在事件循环机制的作用下&#xff0c;渲染主线程取出消息队列中的渲染任务&#xff0c;开启渲染流程。…...

多线程面试题开胃菜1(5道)

一.多线程有什么用&#xff1f;1&#xff09;发挥多核CPU 的优势随着工业的进步&#xff0c;现在的笔记本、台式机乃至商用的应用服务器至少也都是双核的&#xff0c;4 核、8 核甚至 16 核的也都不少见&#xff0c;如果是单线程的程序&#xff0c;那么在双核 CPU 上就浪费了 50…...

asp网站制作教程/willfast优化工具下载

来到这边,开始工作后,才发现.有的时候,心态变了.一切都会改变.以前总是把自己会的技术挂在嘴边.而这次,更多的是踏踏实实的做出来.没有什么可骄傲的.一切都没有. 中午在机房里呆了一中午,又一次熟悉了设备及常用命令.在听完郭老师的培训后,才发现,自己是那么的无知.知识的深度及…...

免费微信网站制作/营业推广的方式

软件开发工程师(JAVA) 岗位职责&#xff1a; 1、 负责京东核心业务系统的需求分析、设计、开发工作 2、 负责相关技术文档编写工作 3、 解决系统中的关键问题和技术难题 任职要求&#xff1a; 1. 踏实诚恳、责任心强&#xff0c;能接受较大的工作强度&#xff0c;具备良好的沟…...

越秀网站建设推广/近期热点新闻

记者今天从上海律师协会了解到&#xff0c;截至2019年底&#xff0c;上海共有1660家律所、26520名律师。 数据还进一步显示了2019年上海律师行业的情况——哪个区的律师最多&#xff1f;律师男女比例如何&#xff1f;律师业务承办量增长了多少……浦东律师数量最多&#xff0c;…...

做移动类网站的书推荐/免费自学电商教程

一、题目 演示示例&#xff1a; 二、测试代码 class Solution {public boolean hasGroupsSizeX(int[] deck) {boolean flagfalse;HashMap<Integer,Integer> mapnew HashMap<>();if(deck.length<2)//数组长度小于2直接返回false{return false;}else{for(int i…...

wordpress301改不回来/不受限制的浏览器

本专栏总结王利涛《C语言嵌入式Linux高级编程》第二期课程 文章目录一、程序的编译、链接1&#xff09;编译过程2&#xff09;链接过程二、链接脚本1&#xff09;不同的代码段如何组装&#xff1f;2&#xff09;链接脚本示例3&#xff09;不同开发环境下的链接脚本4&#xff09…...

要建设一个网站需要什么手续/2022社会热点事件及看法

注&#xff1a;本篇文章很多并没有给出具体答案&#xff0c;因为每一个问题点都可以摊开讲许多相关联内容&#xff0c;其实最终还是需要我们自已去理解和实践&#xff0c;只有理解了其中本质才不会去做一个重复工作的程序员。写代码的时候时候都需要多问自已为什么要这种方式&a…...