当前位置: 首页 > news >正文

桥头做网站/不需要验证码的广告平台

桥头做网站,不需要验证码的广告平台,网站建设 策划方案书,c to c网站开发by STANCH 标签:#计算机图形学 #深度测试 #深度测试 #隐藏面消除 1.概述 根据我们的日常经验,近处的物体会挡住后面的物体,在三维场景中通常通过深度缓冲来实现这样的效果。深度缓冲记录着屏幕对应的每个像素的深度值。模型一开始所在的局部…

by STANCH

标签:#计算机图形学 #深度测试 #深度测试 #隐藏面消除

1.概述

根据我们的日常经验,近处的物体会挡住后面的物体,在三维场景中通常通过深度缓冲来实现这样的效果。深度缓冲记录着屏幕对应的每个像素的深度值。模型一开始所在的局部空间无深度,通过模型矩阵变换到世界空间,此时模型坐标已经变换到了齐次坐标(x,y,z,w),深度存在z分量。通过视图矩阵变换到观察空间,此时深度存在z分量(线性)。通过投影矩阵变换到裁剪空间,此时深度缓冲中裁剪空间的z分量变为z/w(已经变成了非线性的深度,下图),最后通过一些投影映射变换到屏幕空间。通过深度缓冲区,可以进行深度测试,从而确定像素的遮挡关系,保证渲染正确。这是深度缓冲最主要的作用。

来源:《细说图形学渲染管线》

深度测试的原理很简单:比较当前片段的深度值是否比深度缓冲中预设的值小(默认比较方式),如果是则更新深度缓冲和颜色缓冲;否则丢弃片段不更新缓冲区的值。

来源:《细说图形学渲染管线》

2.Z-Fighting

当渲染两个重叠的共面表面时,一个常见的问题是“Z-fighting”,即渲染器无法确定两个表面中的哪个更靠近相机,从而在重叠区域产生视觉伪影。产生Z-fighting是由于深度缓冲精度不够带来的问题。当同一个位置的片段具有相似的深度值时,由于深度缓冲精度不够无法决定应该显示那个片段,导致片段之间抢占深度的至高点,造成了视觉上的假象, 如下图所示。

来源:《细说图形学渲染管线》

解决z-fighting的一个常见技巧是让物体之间有一些偏移,不要将物体靠的太近;另一种技巧是使用高精度的深度缓冲。比如使用32bits的深度缓冲,但是这样会占用更多的显存资源。

3.隐藏面消除 (Hidden Surface Removal, HSR)

在绘制3D场景的时候,我们需要决定哪些部分对观察者是可见的,或者说哪些部分对观察者不可见,对于不可见的部分,我们应该及早的丢弃,例如在一个不透明的墙壁后的物体就不应该渲染。这种问题称之为隐藏面消除(Hidden surface elimination),或者称之为可见面确定(Visible surface detemination)。

来源:OpenGL学习脚印:深度测试(depth testing)

其实隐藏面消除的技术我们来说并不陌生,在渲染管线中图元组装的裁剪(Clipping)、背面剔除和Z-Buffer技术其实就是隐藏面消除的一种,只不过剔除的粒度有所不同,其中裁剪操作针对的是图元,而Z-Buffer是针对像素点。不同的隐藏面消除技术的主要区别在于剔除的粒度以及不同的剔除目的,但是最终目的都是相同的:减少到达片段着色器的片段的数量,提高渲染的性能。除了裁剪之外,我们下面还将介绍几种比较常见的HSR技术!

  • 视椎体剔除 (Viewing-Frustum Culling) 

视椎体剔除是最常见的一种剔除技术,对于大场景我们根本不可能每帧对每个物体都进行渲染,我们其实只需要渲染那些摄像机看得到的物体,也就是位于视椎体内的物体,其他位于视椎体外的物体根本不需要渲染,我们可以将其进行剔除,不送入渲染管线,提升渲染效率。一般来说,视椎体剔除是在CPU端进行剔除工作。视椎体剔除利用的是射线检测的方法,根据视椎体的六个平面来检测物体。我们一般利用物体包围盒(Bounding Box)来做交差检测,常见的包围盒有轴对齐包围盒(AABB)和有向包围盒(OBB)两种。由于场景中物体可能非常多,所以一般需要借助高效的数据结构来提升碰撞检测的性能,常见的用于3D场景碰撞检测的数据结构有:八叉树(OcTree)、二分空间划分(Binary Space Partitioning)、四叉树(Quad Tree)、场景图 (Scene Graphs)、kd树(K-DimensionalTree)和层次包围(Bounding Volume Hierarchies)。

来源:《基于无人机与深度学习的建筑震害评估方法》

  • 入口剔除 (Portal Culling) 

当我们位于室内时,我们就可以使用入口剔除技术进行裁剪优化了。我们可以将室内的门或者窗户看做视椎体来进行裁剪。不过我们其实看到入口剔除有很大的局限性,一般只能在室内环境下使用,无法再室外场景使用该技术,对于室外的大场景我们一般需要使用下面介绍的遮挡剔除技术。

来源:《细说图形学渲染管线》

  • 遮挡剔除 (Occlusion Culling) 

在城市或者森林这种大场景中,我们很容易发现物体之间有很多的遮挡关系,我们需要遮挡剔除技术去掉那些被挡住的物体,来提升渲染效率,如下图所示,左边的图是遮挡剔除前视椎体示意图,右边的图是进行遮挡剔除后需要渲染的物体,可以说大大减少了需要被渲染的物体数量。遮挡剔除的实现方法有很多,既有基于CPU的,也有基于GPU的,也可以混合使用CPU和GPU进行处理。一般进行遮挡剔除时,我们需要通过离线烘焙的犯法来预先计算出潜在可视集合(Potentially Visible Set,PVS)。PVS记录了每个地形块(Tiles)可能看到的物体的集合,用于运行时查找计算。在计算PVS时我们会将场景划分为小的地形块,在每个块上随机选取N个采样点,以这些采样点为起点发出射线来获取场景中相交的物体,记录下物体的ID,求出每个块对应的ID的集合。在运行时根据摄像机的位置获取每个块可见的物体进行渲染。

来源:《细说图形学渲染管线》

提高烘焙的精度通常有两种方法:一是通过减小地形块的大小;二是增加采样点数量。采样的方式有很多,如下面所示。增加采样点的数量可以获得更加精确的结果,减少在块之间切换出现物体闪现或闪失的情况。不过过多的采样点会大大增加离线烘焙的时间,所以需要根据实际情况进行选择采样的数量。我们发现其实基于烘焙的方法缺点还是很明显的:烘焙时间长,需要额外的包体以及无法处理动态的物体。

来源:《细说图形学渲染管线》

参考:

OpenGL学习脚印:深度测试(depth testing)_关闭深度测试时colour buffer-CSDN博客


  关注Mapmost,持续更新GIS、三维美术、计算机技术干货

Mapmost是一套以三维地图和时空计算为特色的数字孪生底座平台,包含了空间数据管理工具(Studio)、应用开发工具(SDK)、应用创作工具(Alpha)。平台能力已覆盖城市时空数据的集成、多源数据资源的发布管理,以及数字孪生应用开发工具链,满足企业开发者用户快速搭建数字孪生场景的切实需求,助力实现行业领先。

欢迎进入官网体验使用:Mapmost——让人与机器联合创作成为新常态

相关文章:

深度测试中的隐藏面消除技术

by STANCH 标签:#计算机图形学 #深度测试 #深度测试 #隐藏面消除 1.概述 根据我们的日常经验,近处的物体会挡住后面的物体,在三维场景中通常通过深度缓冲来实现这样的效果。深度缓冲记录着屏幕对应的每个像素的深度值。模型一开始所在的局部…...

oracle merge的使用

Oracle中的MERGE语句是一个非常强大的工具,它允许用户在一个SQL语句中同时执行INSERT和UPDATE操作。以下是关于Oracle MERGE语句的详细使用说明: 1. 基本语法 MERGE INTO target_table USING source_table ON (merge_condition) WHEN MATCHED THEN …...

《数字图像处理》实验报告四

一、实验任务与要求 对 Fig0403.tif 进行傅里叶变换并显示其频谱图像;fft2(x) 对 Fig0405.tif 图像进行填充和非填充的高斯滤波,并观察其不同;paddedsize,fft2(x,m,n) 由 sobel 空间滤波算子生成相应的频率…...

算法04 模拟算法之一维数组相关内容详解【C++实现】

大家好,我是bigbigli,模拟算法我们将分为几个章节来讲,今天我们只看一维数组相关的题目 目录 模拟的概念 训练:开关灯 解析 参考代码 训练:数组变化 解析 参考代码 训练:折叠游戏 解析 参考代码 …...

【技术解码】百数SRM:如何助力企业快速优化供应链管理?

SRM应用是企业优化供应链管理的重要工具,它帮助企业全面管理供应商关系,从评估、选择到协同合作和绩效监控,确保供应链的稳定性和效率。 对于企业来说,通过全面管理供应商关系,可以降低采购风险,提升产品质…...

想要用tween实现相机的移动,three.js渲染的canvas画布上相机位置一点没动,如何解决??

🏆本文收录于「Bug调优」专栏,主要记录项目实战过程中的Bug之前因后果及提供真实有效的解决方案,希望能够助你一臂之力,帮你早日登顶实现财富自由🚀;同时,欢迎大家关注&&收藏&&…...

SQL连接与筛选:解析left join on和where的区别及典型案例分析

文章目录 前言数据库在运行时的执行顺序一、left join on和where条件的定义和作用left join on条件where条件 二、left join on和where条件的区别原理不同left join原理:where原理: 应用场景不同执行顺序不同(作用阶段不同)结果集…...

oliva-bruteforce-luks

olivaeasyLUKS v2破解、bruteforce-luks工具使用、cryptsetup使用、cap_dac_read_searcheip、mysql使用 主机发现 ┌──(kali㉿kali)-[~/桌面/OSCP] └─$ sudo netdiscover -i eth0 -r 192.168.44.148/24服务扫描 ┌──(kali㉿kali)-[~/桌面/OSCP] └─$ sudo nmap -sV -…...

图像超分辨率重建

一、什么是图像超分辨 图像超分辨是一种技术,旨在通过硬件或软件的方法提高原有图像的分辨率。这一过程涉及从一系列低分辨率的图像中获取一幅高分辨率的图像,实现了时间分辨率向空间分辨率的转换。超分辨率重建的核心思想是利用多帧图像序列的时间带宽来…...

小米上架遇到的隐私协议问题

1. 找到【APP权限设置】,点击详情,一一对照,删除没用的,新增小米商家必须要有的内容 2. APP 存在未经用户同意读取“OAID”的行为 uniapp官方文档对应内容处...

【区分vue2和vue3下的element UI Message 消息提示组件,分别详细介绍属性,事件,方法如何使用,并举例】

在 Vue 2 中,我们通常使用 Element UI 的 this.$message 方法来显示消息提示,而不是作为一个组件直接在模板中使用。然而,在 Vue 3 的 Element Plus 中,虽然 this.$message 的使用方式仍然保留,但官方文档可能更倾向于…...

架构设计 - Nginx Lua 缓存配置

摘要: web 应用业务缓存通常3级: 一级缓存:JVM 本地缓存 二级缓存:Redis集中式缓存 三级缓存:Nginx Proxy Cache 缓存 或 Nginx Lua 缓存 四级缓存:静态资源CDN缓存 页面静态化 本文主要分享 Nginx Lua 缓存配置开发 鉴于 Nginx Proxy Cache 缓存的劣势,在生产项目…...

lua的GC

关于lua的gc云风大佬在 Lua GC 的源码剖析 系列文章中讲得很清楚,这里做一下简单的记录。 分步gc lua使用的是一种三色标记清除算法(tri-color incremental mark & sweep),大体步骤如下: 初始阶段,所…...

基于python爬虫对豆瓣影评分析系统的设计与实现

基于python爬虫对豆瓣影评分析系统的设计与实现 Design and Implementation of a Python-based Web Crawler for Analyzing Douban Movie Reviews 完整下载链接:基于python爬虫对豆瓣影评分析系统的设计与实现 文章目录 基于python爬虫对豆瓣影评分析系统的设计与实现摘要第一…...

想让梦想照进现实?六西格玛绿带培训为你架起桥梁

六西格玛,这个源自摩托罗拉的质量管理方法论,如今已成为全球众多企业追求卓越的秘诀。它强调以数据为基础,通过减少变异和浪费,提高流程效率和质量,进而提升企业整体绩效。而六西格玛绿带培训,则是这个强大…...

大数据面试题之HDFS

目录 HDFS文件写入和读取流程 HDFS组成架构 介绍下HDFS,说下HDFS优缺点,以及使用场景 HDFS作用 HDFS的容错机制 HDFS的存储机制 HDFS的副本机制 HDFS的常见数据格式,列式存储格式和行存储格式异同点,列式存储优点有哪些? …...

(9)农作物喷雾器

文章目录 前言 1 必要的硬件 2 启用喷雾器 3 配置水泵 4 参数说明 前言 Copter 包括对农作物喷雾器的支持。该功能允许自动驾驶仪连接到一个 PWM 操作的泵和(可选)旋转器,根据飞行器速度控制液体肥料的流动速度。 稍微过时的视频显示了…...

智慧互联:Vatee万腾平台展现科技魅力

随着科技的迅猛发展,我们的生活正逐渐变得智能化、互联化。在这个信息爆炸的时代,一个名为Vatee万腾的平台正以其独特的魅力,引领我们走向一个更加智能的未来。 Vatee万腾,这个名字本身就充满了对科技未来的憧憬与期待。作为一家专…...

Charles抓包工具系列文章(四)-- Rewrite 重写工具

一、背景 这是一款比Map Local/Remote 还强大的工具,更加灵活,体现在以下几点: 重写request报文重写response报文header 字段的增删改query param 字段的增删改重写 body 字段改写http 响应状态status重写host/url/path 从这也可以看出其强…...

【PB案例学习笔记】-24创建一个窗口图形菜单

写在前面 这是PB案例学习笔记系列文章的第24篇,该系列文章适合具有一定PB基础的读者。 通过一个个由浅入深的编程实战案例学习,提高编程技巧,以保证小伙伴们能应付公司的各种开发需求。 文章中设计到的源码,小凡都上传到了gite…...

环境配置的相关问题

一、shap安装踩坑 遇到错误: A module that was compiled using NumPy 1.x cannot be run in NumPy 2.0.0 as it may crash. To support both 1.x and 2.x versions of NumPy, modules must be compiled with NumPy 2.0. Some module may need to rebuild instead…...

github配置可拉取项目到本地

首先配置用户名和邮箱: git config --global user.name 自己的名字git config --global user.email 自己的邮箱配置完之后检查一下: git config --global user.namegit config --global user.email如果提示的是自己配置好的名字和邮箱就Ok 然后拉取githu…...

Snippet-AndroidFontWeight

常用FontWeight值 <?xml version"1.0" encoding"utf-8"?> <resources><integer name"font_weight_Thin">100</integer><integer name"font_weight_ExtraLight">200</integer><integer name…...

选择合适的分类评价指标:传统指标与自定义指标的权衡

这里写目录标题 选择合适的分类评价指标&#xff1a;传统指标与自定义指标的权衡传统评价指标**准确率&#xff08;Accuracy&#xff09;****精确度&#xff08;Precision&#xff09;和召回率&#xff08;Recall&#xff09;****F1分数&#xff08;F1 Score&#xff09;** 自定…...

数据结构-线性表的链式表示

目录 前言一、线性表的链式表示和实现1.1 线性表的表示1.2 基本操作的实现1.3 线性表的链式表示的优缺点 总结 前言 本篇文章主要介绍线性表的链式表示 一、线性表的链式表示和实现 1.1 线性表的表示 线性表的链式表示又称为链式存储结构或链式映像 链式存储定义&#xff1…...

DDL-表操作-数据类型

一.DDL-表操作-数据类型 MySQL中的数据类型有很多,主要分为三类:数值类型,字符串类型,日期类型。 二.关系表 注意: 无符号和有符号的取值范围不是一样的,无符号需要加上UNSIGNED范围。 BLOB&#xff1a;用来描述二进制数据 TEXT:用来描述字符串 三.定长字符串和变长字符串 c…...

python实例代码 - 多层感知机预测销售情况

多层感知器预测销售情况 将一种广告投放到TV、newspaper、radio上时不同组合的情况会对应不同的销售量。 # -*- coding:utf-8 -*- # PredicateAdvertise.py # 多层感知器预测销售情况 # 将一种广告投放到TV、newspaper、radio上时不同组合的情况会对应不同的销售量。 import …...

JVM专题十:JVM中的垃圾回收机制

在JVM专题九&#xff1a;JVM分代知识点梳理中&#xff0c;我们主要介绍了JVM为什么采用分代算法&#xff0c;以及相关的概念&#xff0c;本篇我们将详细拆分各个算法。 垃圾回收的概念 垃圾回收&#xff08;Garbage Collection&#xff0c;GC&#xff09;确实是计算机编程中的…...

MySQL入门学习-索引.创建索引

索引是 MySQL 中用于加速查询的一种数据结构。它通过在表的列上创建索引来加快数据的检索速度。 一、索引的概念 索引类似于书的目录&#xff0c;可以快速定位到表中的数据。当在表中的列上创建索引后&#xff0c;MySQL 会根据索引列的值对数据进行排序&#xff0c;并建立一个…...

ChatGPT智能对话绘画系统 带完整的安装源代码包以及搭建教程

系统概述 ChatGPT 智能对话绘画系统是一款集智能语言处理和绘画创作于一体的综合性系统。它利用了深度学习和自然语言处理技术&#xff0c;能够理解用户的意图和需求&#xff0c;并通过与用户的交互&#xff0c;生成富有创意的绘画作品。该系统的核心是一个强大的人工智能模型…...