当前位置: 首页 > news >正文

嵌入技术Embedding

嵌入(Embedding)是一种将高维数据映射到低维空间的技术,广泛应用于自然语言处理(NLP)、计算机视觉和推荐系统等领域。嵌入技术的核心思想是将复杂的数据表示为低维向量,使其在这个低维空间中保留尽可能多的原始信息和结构关系。

1. 概述

嵌入的主要目的是将离散对象(如单词、图像、用户等)表示为连续的向量,以便在连续空间中进行计算和比较。嵌入向量不仅提高了计算效率,还能捕捉对象之间的语义或结构关系。

2. 自然语言处理中的嵌入

在 NLP 中,嵌入技术特别常见,主要包括词嵌入(Word Embeddings)、句子嵌入(Sentence Embeddings)和文档嵌入(Document Embeddings)。

**2.1. 词嵌入(Word Embeddings)**

词嵌入是将单词表示为实数向量,使得语义相似的单词在向量空间中彼此靠近。常用的词嵌入方法有:

- **Word2Vec**:通过Skip-Gram或CBOW模型训练,捕捉词与上下文之间的关系。
  ```python
  from gensim.models import Word2Vec
  sentences = [["I", "love", "natural", "language", "processing"], ["Word2Vec", "is", "great"]]
  model = Word2Vec(sentences, vector_size=100, window=5, min_count=1, workers=4)
  vector = model.wv['natural']
  ```

- **GloVe**:通过构建共现矩阵和进行矩阵分解,生成词向量。
  ```python
  import numpy as np
  # GloVe vectors can be loaded from pre-trained files
  glove_vectors = np.loadtxt("glove.6B.100d.txt")
  ```

- **FastText**:考虑词的子词信息,能处理未登录词(Out-of-Vocabulary, OOV)。
  ```python
  from gensim.models import FastText
  model = FastText(sentences, vector_size=100, window=5, min_count=1, workers=4)
  vector = model.wv['natural']
  ```

**2.2. 句子和文档嵌入**

句子和文档嵌入通过将整个句子或文档表示为向量,捕捉更高层次的语义信息。常用方法有:

- **Doc2Vec**:扩展Word2Vec,通过引入文档标签进行训练。
  ```python
  from gensim.models import Doc2Vec
  documents = [TaggedDocument(doc, [i]) for i, doc in enumerate(sentences)]
  model = Doc2Vec(documents, vector_size=100, window=5, min_count=1, workers=4)
  vector = model.dv[0]
  ```

- **Sentence-BERT**:基于BERT模型,使用对比学习方法生成句子嵌入。
  ```python
  from sentence_transformers import SentenceTransformer
  model = SentenceTransformer('bert-base-nli-mean-tokens')
  sentences = ["This is an example sentence", "Each sentence is converted"]
  embeddings = model.encode(sentences)
  ```

3. 计算机视觉中的嵌入

在计算机视觉中,嵌入技术用于将图像或图像中的对象表示为向量,常用于图像分类、检索和生成等任务。常用方法包括:

- **卷积神经网络(CNN)**:通过训练CNN模型,提取图像的特征表示。
  ```python
  from tensorflow.keras.applications import VGG16
  model = VGG16(weights='imagenet', include_top=False)
  img = ... # load and preprocess image
  features = model.predict(img)
  ```

- **自监督学习方法**:如SimCLR,通过对比学习方法生成图像嵌入。
  ```python
  # SimCLR implementations are available in various deep learning libraries
  ```

 4. 推荐系统中的嵌入

在推荐系统中,嵌入技术用于将用户和物品表示为向量,捕捉用户偏好和物品特征。常用方法包括:

- **矩阵分解**:如SVD,将用户-物品交互矩阵分解为低维矩阵。
  ```python
  from sklearn.decomposition import TruncatedSVD
  svd = TruncatedSVD(n_components=50)
  user_item_matrix = ... # user-item interaction matrix
  latent_matrix = svd.fit_transform(user_item_matrix)
  ```

- **因子分解机(Factorization Machines)**:结合矩阵分解和线性模型,处理稀疏数据。
  ```python
  # Factorization Machines implementations are available in various libraries
  ```

 5. 嵌入向量的质量评估

评估嵌入向量的质量是确保模型性能的关键。常用评估方法包括:

- **定性评估**:通过可视化和邻近词检查,评估向量的语义一致性。
- **定量评估**:通过下游任务(如分类、检索)的性能,评估嵌入向量的有效性。

 6. 嵌入向量的应用

嵌入向量在各个领域有广泛的应用:

- **文本相似度计算**:通过计算嵌入向量的余弦相似度,评估文本相似度。
- **信息检索**:通过嵌入向量检索相似文档或图像。
- **聚类分析**:使用嵌入向量进行聚类分析,发现数据中的潜在模式。

嵌入技术是机器学习和数据分析中的重要工具,通过将高维数据表示为低维向量,简化了数据的处理和计算。无论是在自然语言处理、计算机视觉还是推荐系统中,嵌入技术都发挥了重要作用。掌握和应用嵌入技术,可以显著提升模型性能和数据处理效率,在实际应用中具有广泛的价值。

相关文章:

嵌入技术Embedding

嵌入(Embedding)是一种将高维数据映射到低维空间的技术,广泛应用于自然语言处理(NLP)、计算机视觉和推荐系统等领域。嵌入技术的核心思想是将复杂的数据表示为低维向量,使其在这个低维空间中保留尽可能多的…...

Pandas中的数据转换[细节]

今天我们看一下Pandas中的数据转换,话不多说直接开始🎇 目录 一、⭐️apply函数应用 apply是一个自由度很高的函数 对于Series,它可以迭代每一列的值操作: 二、⭐️矢量化字符串 为什么要用str属性 替换和分割 提取子串 …...

vue2面试题——路由

1. 路由的模式和区别 路由的模式:history,hash 区别: 1. 表象不同 history路由:以/为结尾,localhost:8080——>localhost:8080/about hash路由:会多个#,localhost:8080/#/——>localhost:…...

【AI应用探讨】—朴素贝叶斯应用场景

目录 文本分类 推荐系统 信息检索 生物信息学 金融领域 医疗诊断 其他领域 文本分类 垃圾邮件过滤:朴素贝叶斯被广泛用于垃圾邮件过滤任务,通过邮件中的文本内容来识别是否为垃圾邮件。例如,它可以基于邮件中出现的单词或短语的概率来…...

使用matlab的大坑,复数向量转置!!!!!变量区“转置变量“功能(共轭转置)、矩阵转置(默认也是共轭转置)、点转置

近期用verilog去做FFT相关的项目,需要用到matlab进行仿真然后和verilog出来的结果来做对比,然后计算误差。近期使用matlab犯了一个错误,极大的拖慢了项目进展,给我人都整emo了,因为怎么做仿真结果都不对,还…...

昇思25天学习打卡营第8天|保存与加载

1. 学习内容复盘 1.1 保存与加载 上一章节主要介绍了如何调整超参数,并进行网络模型训练。在训练网络模型的过程中,实际上我们希望保存中间和最后的结果,用于微调(fine-tune)和后续的模型推理与部署,本章…...

【vueUse库Animation模块各函数简介及使用方法】

vueUse库是一个专门为Vue打造的工具库,提供了丰富的功能,包括监听页面元素的各种行为以及调用浏览器提供的各种能力等。其中的Browser模块包含了一些实用的函数,以下是这些函数的简介和使用方法: vueUse库Sensors模块各函数简介及使用方法 vueUseAnimation函数1. useInter…...

汇川H5u小型PLC作modbusRTU从站设置及测试

目录 新建工程COM通讯参数配置协议选择协议配置 查看手册Modbus地址对应关系仿真测试 新建工程 新建一个H5U工程,不使用临时工程 系列选择H5U即可 COM通讯参数配置 协议选择 选择ModbusRTU从站 协议配置 端口号默认不可选择 波特率这里使用9600 数据长度&…...

基于Java的多元化智能选课系统-计算机毕业设计源码040909

摘 要 多元化智能选课系统使用Java语言的Springboot框架,采用MVVM模式进行开发,数据方面主要采用的是微软的Mysql关系型数据库来作为数据存储媒介,配合前台技术完成系统的开发。 论文主要论述了如何使用JAVA语言开发一个多元化智能选课系统&a…...

idea使用maven打包报错GBK不可映射字符

方法一:设置环境变量 打开“控制面板” > “系统和安全” > “系统”。点击“高级系统设置”。在“系统属性”窗口中,点击“环境变量”。在“系统变量”部分,点击“新建”,创建一个新的变量: 变量名:…...

解决Linux系统Root不能远程SSH登录

问题描述 在使用Linux主机或者开发板的时候远程SSH一直登录不上Root账户,只能登录其他账户。 问题解决 使用文本编辑器修改SSH的配置文件sshd_config。这个文件通常位于/etc/ssh/目录下。 sudo nano /etc/ssh/sshd_config在sshd_config文件中,找到Pe…...

【java】【控制台】【javaSE】 初级java家教管理系统控制台命令行程序项目

更多项目点击👆👆👆完整项目成品专栏 【java】【控制台】【javaSE】 初级java家教管理系统控制台命令行程序项目 获取源码方式项目说明:功能点数据库涉及到: 项目文件包含:项目运行环境 :截图其…...

(2024)豆瓣电影TOP250爬虫详细讲解和代码

(2024)豆瓣电影TOP250爬虫详细讲解和代码 爬虫目的 获取 https://movie.douban.com/top250 电影列表的所有电影的属性。并存储起来。说起来很简单就两步。 第一步爬取数据第二步存储 爬虫思路 总体流程图 由于是分页的,要先观察分页的规…...

am62x芯片安全类型确认(HS-SE, HS-FS or GP)

文章目录 芯片安全类型设置启动方式获取串口信息下载脚本运行脚本示例sk-am62x板卡参考芯片安全类型 AM62x 芯片有三个安全级别。 • GP:通用版本 • HS-FS:高安全性 - 现场安全型 • HS-SE:高安全性 - 强制安全型 在SD卡启动文件中,可以查看到, 但板上的芯片,到底是那…...

高通安卓12-在源码中查找应用的方法

1.通过搜索命令查找app 一般情况下,UI上看到的APP名称会在xml文件里面定义出来,如 搜索名字为WiGig的一个APP 执行命令 sgrep "WiGig" 2>&1|tee 1.log 将所有的搜索到的内容打印到log里面 Log里面会有一段内容 在它的前面是这段内…...

民用无人驾驶航空器运营合格证怎么申请

随着科技的飞速发展,无人机已经从遥不可及的高科技产品飞入了寻常百姓家。越来越多的人想要亲自操纵无人机,探索更广阔的天空。但是,飞行无人机可不是简单的事情,你需要先获得无人机许可证,也就是今天所要讲的叫民用无…...

[SD必备知识18]修图扩图AI神器:ComfyUI+Krita加速修手抽卡,告别低效抽卡还原光滑细腻双手,写真无需隐藏手势

🌹大家好!我是安琪!感谢大家的支持与鼓励。 krita-ai-diffusion简介 在AIGC图像生成领域的迅猛发展下,当前的AI绘图工具如Midjourney、Stable Diffusion都能够近乎完美的生成逼真富有艺术视觉效果的图像质量。然而,针…...

4.Spring Context 装载过程源码分析

Spring的ApplicationContext是Spring框架中的核心接口之一,它扩展了BeanFactory接口,提供了更多的高级特性,如事件发布、国际化支持、资源访问等。ApplicationContext的装载过程是Spring框架中非常重要的一个环节。以下是ApplicationContext装…...

mysql之数据存储单元

简介 在MySQL中,单行数据存储单元的大小并不是固定的,它取决于多种因素,如表结构中使用的数据类型以及所使用的存储引擎。 但是我们可以提供一些关于MySQL中典型行数据存储单元大小的一般性指引: 存储引擎 InnoDB(默认存储引擎) InnoDB中单行数据存储单元的大小通常在8-16…...

未来20年人工智能将如何塑造社会

照片由Brian McGowan在Unsplash上拍摄 更多资讯,请访问 2img.ai “人工智能会成为我们的救星还是我们的末日?” 几十年来,这个问题一直困扰着哲学家、科学家和科幻爱好者。 当我们踏上技术革命的边缘时,是时候透过水晶球&#x…...

Maven的依赖传递、依赖管理、依赖作用域

在Maven项目中通常会引入大量依赖,但依赖管理不当,会造成版本混乱冲突或者目标包臃肿。因此,我们以SpringBoot为例,从三方面探索依赖的使用规则。 1、 依赖传递 依赖是会传递的,依赖的依赖也会连带引入。例如在项目中…...

ArcGIS定义1.5度带坐标系与投影转换

​ 点击下方全系列课程学习 点击学习—>ArcGIS全系列实战视频教程——9个单一课程组合系列直播回放 点击学习——>遥感影像综合处理4大遥感软件ArcGISENVIErdaseCognition 对于ArcGIS如何定义高斯克吕格3度带、6度带,我相信大部分人都是比较清楚的&#xff0…...

艺术与科技的精湛融合:探讨AI绘画与AI动画的交汇点

前言 艺术与科技的精湛融合:探讨AI绘画与AI动画的交汇点 在当代社会中,艺术和科技的结合呈现出了从来灭有的创新和可能性。随着人工智能技术的不断发展,AI绘画与AI动画的融合愈发引人瞩目。这一融合不仅给艺术家们带来了更多创作的可能&…...

【移动应用开发期末复习】第五/六章

系列文章 第一章——Android平台概述 第一章例题 第二章——Android开发环境 第二章例题 第三章 第三章例题 第四章 系列文章界面布局设计线性布局表格布局帧布局相对布局约束布局控制视图界面的其他方法代码控制视图界面数据存储与共享首选项信息数据文件SQLite数据库Content…...

excel FORMULA

在Excel中,FORMULA 实际上是一个拼写错误。您可能是指 FORMULA 的正确拼写 FORMULA(这在Excel中不是有效的函数或关键字),但更可能是您想要讨论的是FORMULA(公式)的创建或使用。 在Excel中,您可…...

【学习】开发板接口

工作用到机器的开发板 有如上三个接口 。最右是仿真器,中间是RS232串口,最左是电源线 仿真器 这个是仿真器 接入机器那端用的是SWD模式,另一端通过USB接电脑(这小肥手拍的怪好看)仿真口连接了四条线分别是 VCC&#…...

主干网络篇 | YOLOv5/v7 更换骨干网络之 EfficientNet | 卷积神经网络模型缩放的再思考

主干网络篇 | YOLOv5/v7 更换骨干网络之 EfficientNet | 卷积神经网络模型缩放的再思考 1. 简介 近年来,深度卷积神经网络(CNN)在图像识别、目标检测等领域取得了巨大进展。然而,随着模型复杂度的不断提升,模型训练和…...

如何测试Java应用的性能?

如何测试Java应用的性能? 大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿! 在开发Java应用程序的过程中,性能测试是一个不可忽视的重要环…...

css 动画

当涉及到CSS动画时,有几种方式可以实现动画效果。以下是一些常见的CSS动画技术: 使用keyframes规则:keyframes规则允许你创建一个动画序列,定义动画的关键帧和属性值。例如,你可以创建一个旋转动画,让一个…...

# 设置 Linux 安全策略允许本地 IP 开通了访问权限

设置 Linux 安全策略允许本地 IP 开通了访问权限 在 Linux 中设置安全策略通常涉及使用 iptables 或者 firewalld( 在较新的 Red Hat/CentOS 版本中)。以下是使用 iptables 允许特定本地 IP 访问的例子: 1、先清除现有的规则(谨…...