当前位置: 首页 > news >正文

句法分析概述

第1关:句法分析概述

任务描述

本关任务:通过对句法分析基本概念的学习,完成相应的选择题。

相关知识

为了完成本关任务,你需要掌握:

  1. 句法分析的基础概念;

  2. 句法分析的数据集和评测方法。

句法分析简介

句法分析( syntactic parsing )是自然语言处理中的关键技术之一,它是对输入的文本句子进行分析以得到句子的句法结构的处理过程。对句法结构进行分析,一方面是语言理解的自身需求,句法分析是语言理解的重要一环,另一方面也为其它自然语言处理任务提供支持。例如句法驱动的统计机器翻译需要对源语言或目标语言(或者同时两种语言)进行句法分析。

从20世纪50年代初机器翻译课题被提出时算起,自然语言处理研究已经有60余年的历史,句法分析一直是自然语言处理前进的巨大障碍。句法分析主要有以下两个难点:

  • 歧义。自然语言区别于人工语言的一个重要特点就是它存在大量的歧义现象。人类自身可以依靠大量的先验知识有效地消除各种歧义,而机器由于在知识表示和获取方面存在严重不足,很难像人类那样进行句法消歧;

  • 搜索空间。句法分析是一个极为复杂的任务,候选树个数随句子增多呈指数级增长,搜索空间巨大。因此,必须设计出合适的解码器,以确保能够在可以容忍的时间内搜索到模型定义最优解。

图 1 句法分析的结构

句法分析( Parsing )是从单词串得到句法结构的过程,而实现该过程的工具或程序被称为句法分析器( Parser )。句法分析的种类很多,如图1所示,这里我们根据其侧重目标将其分为完全句法分析和局部句法分析两种。两者的差别在于,完全句法分析以获取整个句子的句法结构为目的;而局部句法分析只关注于局部的一些成分,例如常用的依存句法分析就是一种局部分析方法。

句法分析中所用方法可以简单地分为基于规则的方法和基于统计的方法两大类。两种方法的特点有:

  1. 基于规则的方法:处理大规模真实文本时,存在语法规则覆盖有限、系统可迁移差等问题;

  2. 基于统计的方法:最典型的是 PCFG ,本质是一套面向候选树的评价方法,给正确的句法树赋予一个较高分值不合理的句法树赋予一个较低分支,从而借用分值进行消歧。

句法分析的数据集

统计学习方法多需要语料数据的支撑,统计句法分析也不例外。相较于分词或词性注,句法分析的数据集要复杂很多,其是一种树形的标注结构,因此又称树库。

目前的树库有:

  1. 英文:英文宾州树库,前身为 ATIS 和 WSJ 树库,具有较高的一致性和标注准确率;

  2. 中文:中文宾州树库、清华树库、台湾中研院树库等。

序号标记代码标记名称
1np名词短语
2tp时间短语
3sp空间短语
4vp动词短语
5ap形容词短语
6bp区别词短语
7dp副词短语

如上表所示,不同的树库有着不同的标记体系,使用时切忌使用一种树库的句法分析器,然后用其他树库的标记体系来解释。

句法分析的任务

语义分析通常以句法分析的输出结果作为输入以便获得更多的指示信息,根据句法结构的表示形式不同,最常见的句法分析任务可以分为以下三种:

  1. 句法结构分析,作用是识别出句子中的短语结构以及短语之间的层次句法关系;

  2. 依存关系分析,又称依存句法分析,简称依存分析,作用是识别句子中词汇与词汇之间的相互依存关系;

  3. 深层文法句法分析,即利用深层文法,例如词汇化树邻接文法、词汇功能文法、组合范畴文法等,对句子进行深层的句法以及语义分析。

句法分析的评测方法

句法分析评测的主要任务是评测句法分析器生成的树结构与手工标注的树结构之间的相似程度。其主要考虑两方面的性能:满意度和效率。其中满意度是指测试句法分析器是否适合或胜任某个特定的自然语言处理任务;而效率主要用于对比句法分析器的运行时间。

目前流行的是 PARSEVAL 评测体系,主要指标有准确率(分析正确的短语个数在句法分析结果中所占比例,即分析结果中与标准句法树相匹配的短语个数占分析结果中所有短语个数的比例)、召回率(分析得到的正确短语个数占标准分析树全部短语个数的比例)、交叉括号数(分析得到的某一短语覆盖范围与标准句法分析结果的某一短语的覆盖范围存在重叠而不存在包含关系,从而构成一个交叉括号)。

作答要求

根据相关知识,按照要求完成右侧选择题任务。作答完毕,通过点击“测评”,可以验证答案的正确性。

  • 1、

    句法分析的主要难点有:

    A、

    分词

    B、

    歧义

    C、

    词性标注

    D、

    搜索空间

BD

  • 2、

    下列哪个不属于 PARSEVAL 评测体系的主要指标

    A、

    准确率

    B、

    交叉括号数

    C、

    符号数

    D、

    召回率

C

相关文章:

句法分析概述

第1关:句法分析概述 任务描述 本关任务:通过对句法分析基本概念的学习,完成相应的选择题。 相关知识 为了完成本关任务,你需要掌握: 句法分析的基础概念; 句法分析的数据集和评测方法。 句法分析简介…...

简单了解css的基本使用

CSS 一、基础认知 1、CSS引入方式 1.1、内嵌式(CSS写在style标签中) style标签虽然可以写在页面的任意位置,但是通常约定写在head标签中 2.2、外联式(CSS写在一个单独的.css文件中) 需要通过link标签在网页中引入…...

构建网络图 (JavaScript)

前序:在工作中难免有一些千奇百怪的需求,如果你遇到构建网络图,或者学习应对未来,请看这边文章,本文以代码为主。 网络图是数据可视化中实用而有效的工具,特别适用于说明复杂系统内的关系和连接。这些图表…...

洛谷U389682 最大公约数合并

这道题最后有一个性质没有想出来,感觉还是有一点遗憾。 性质一、贪心是不对的 8 11 11 16虽然第一次选择8和16合并是最优的,但是如果合并两次的话8 11 11是最优的。 性质二 、有1的情况就是前k1个,也就是说,很多情况下取前k1都…...

video_多个m3u文件合并成一个m3u文件

主要是用#EXT-X-DISCONTINUITY进行拼接,用简单的例子说明: 第一个文件: #EXTM3U #EXT-X-VERSION:3 #EXT-X-TARGETDURATION:69 #EXT-X-MEDIA-SEQUENCE:1001 #EXTINF:60.000000, xmt202406_11001.ts #EXTINF:60.000000, xmt202406_11002.ts #EXTINF:60.000000, xmt202406_11…...

x264 码率控制 MBtree 原理:i_propagate_cost计算过程

x264 码率控制 MBtree 原理 关于x264 码率控制中 MBtree 算法的原理具体可以参考:x264 码率控制MBtree原理。 i_propagate_cost介绍 该值在 frame.h 中 x264_frame_t结构体中声明。该值是一个 uint16_t型指针变量,在 MBtree 算法中用来存储每个宏块的传播代价。在*frame_ne…...

C语言基础笔记(全)

一、数据类型 数据的输入输出 1.数据类型 常量变量 1.1 数据类型 1.2 常量 程序运行中值不发生变化的量,常量又可分为整型、实型(也称浮点型)、字符型和字符串型 1.3 变量 变量代表内存中具有特定属性的存储单元,用来存放数据,即变量的值&a…...

通过注释语句,简化实体类的定义(省略get/set/toString的方法)

引用Java的lombok库,减少模板代码,如getters、setters、构造函数、toString、equals和hashCode方法等 import lombok.AllArgsConstructor; import lombok.Data; import lombok.NoArgsConstructor;Data NoArgsConstructor AllArgsConstructorData&#xf…...

springboot框架使用Netty依赖中解码器的作用及实现详解

在项目开发 有需求 需要跟硬件通信 也没有mqtt 作为桥接 也不能http 请求 api 所以也不能 json字符串这么爽传输 所以要用tcp 请求 进行数据交互 数据还是16进制的 写法 有帧头 什么的 对于这种物联网的这种对接 我的理解就是 我们做的工作就像翻译 把这些看不懂的 字节流 变成…...

Python爬虫实战之爬取京东商品数据

在数字化时代,数据如同黄金般珍贵,而电商数据,尤其是像京东这样的大型电商平台上的信息,更是商家、市场分析师和数据科学家眼中的瑰宝。本文将带您走进Python爬虫的世界,探索如何高效、合法地采集京东商品数据&#xf…...

浅析Resource Quota中limits计算机制

前言 在生产环境中,通常需要通过配置资源配额(Resource Quota)来限制一个命名空间(namespace)能使用的资源量。在资源紧张的情况下,常常需要调整工作负载(workload)的请求值&#xf…...

《数据结构与算法基础 by王卓老师》学习笔记——1.4算法与算法分析

一、算法 1.1算法的研究内容 1.2算法的定义 1.3算法的描述 以下是算法的自然语言描述 以下是算法的传统流程图表示 以下是NS流程图表示 1.4算法和程序的区别与联系 1.5算法的五个特性 1.6算法设计的要求 Robustness也称为鲁棒性 二、算法分析 2.1算法时间效率的度量 2.1.1事…...

运维团队如何加强安全设备监控与日志管理

随着信息技术的飞速发展,网络安全问题日益凸显,安全设备的监控和日志管理成为了运维团队不可或缺的工作内容。本文将结合运维行业的实际需求,探讨如何加强安全设备监控与日志管理,以提升系统的安全性和稳定性。 一、安全设备监控…...

仓库管理系统13--物资设置

1、添加窗体 2、设计UI界面 注意这个下拉框的绑定&#xff0c;你看到的选项是由displaymember决定&#xff0c;当你选择了哪个选项时&#xff0c;后台绑定这个选项的ID <UserControl x:Class"West.StoreMgr.View.GoodsView"xmlns"http://schemas.microsoft…...

机器人控制系列教程之URDF文件语法介绍

前两期推文&#xff1a;机器人控制系列教程之动力学建模(1)、机器人控制系列教程之动力学建模(2)&#xff0c;我们主要从数学的角度介绍了机器人的动力学建模的方式&#xff0c;随着机器人技术的不断发展&#xff0c;机器人建模成为了机器人系统设计中的一项关键任务。URDF&…...

Arathi Basin (AB) PVP15

Arathi Basin &#xff08;AB&#xff09; PVP15 阿拉希盆地&#xff0c;PVP&#xff0c;15人战场...

Ubuntu/Linux SSH 端口转发

文章目录 Ubuntu/Linux SSH 端口转发概述本地端口转发场景一场景二 参考资料 Ubuntu/Linux SSH 端口转发 概述 SSH, Secure Shell 是一种在网络上用于安全远程登录到另一台机器的工具。除了远程登录以外&#xff0c;ssh 的端口转发是它的另一项强大功能。通过 ssh 端口转发功…...

flask的locked_cached_property

下面是一个关于 locked_cached_property 装饰器的详细教程。这个装饰器将一个方法转换为一个惰性属性&#xff0c;在第一次访问时计算其值&#xff0c;并在随后的访问中缓存该值。同时&#xff0c;它在多线程环境中是线程安全的。 教程&#xff1a;理解和使用 locked_cached_p…...

OSI七层模型TCP/IP四层面试高频考点

OSI七层模型&TCP/IP四层&面试高频考点 1 OSI七层模型 1. 物理层&#xff1a;透明地传输比特流 在物理媒介上传输原始比特流&#xff0c;定义了连接主机的硬件设备和传输媒介的规范。它确保比特流能够在网络中准确地传输&#xff0c;例如通过以太网、光纤和无线电波等媒…...

Swagger2及常用校验注释说明

Api(value "后台用户管理") RestController RequestMapping("bossuser") public class BossUserController {ApiOperation(value "测试接口")PostMapping("test")public String testUser(Valid RequestBody TestUser user) {LOG.inf…...

使用VSCode开发Django指南

使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架&#xff0c;专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用&#xff0c;其中包含三个使用通用基本模板的页面。在此…...

SkyWalking 10.2.0 SWCK 配置过程

SkyWalking 10.2.0 & SWCK 配置过程 skywalking oap-server & ui 使用Docker安装在K8S集群以外&#xff0c;K8S集群中的微服务使用initContainer按命名空间将skywalking-java-agent注入到业务容器中。 SWCK有整套的解决方案&#xff0c;全安装在K8S群集中。 具体可参…...

java 实现excel文件转pdf | 无水印 | 无限制

文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...

376. Wiggle Subsequence

376. Wiggle Subsequence 代码 class Solution { public:int wiggleMaxLength(vector<int>& nums) {int n nums.size();int res 1;int prediff 0;int curdiff 0;for(int i 0;i < n-1;i){curdiff nums[i1] - nums[i];if( (prediff > 0 && curdif…...

Redis数据倾斜问题解决

Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中&#xff0c;部分节点存储的数据量或访问量远高于其他节点&#xff0c;导致这些节点负载过高&#xff0c;影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...

是否存在路径(FIFOBB算法)

题目描述 一个具有 n 个顶点e条边的无向图&#xff0c;该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序&#xff0c;确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数&#xff0c;分别表示n 和 e 的值&#xff08;1…...

CVPR2025重磅突破:AnomalyAny框架实现单样本生成逼真异常数据,破解视觉检测瓶颈!

本文介绍了一种名为AnomalyAny的创新框架&#xff0c;该方法利用Stable Diffusion的强大生成能力&#xff0c;仅需单个正常样本和文本描述&#xff0c;即可生成逼真且多样化的异常样本&#xff0c;有效解决了视觉异常检测中异常样本稀缺的难题&#xff0c;为工业质检、医疗影像…...

深入浅出WebGL:在浏览器中解锁3D世界的魔法钥匙

WebGL&#xff1a;在浏览器中解锁3D世界的魔法钥匙 引言&#xff1a;网页的边界正在消失 在数字化浪潮的推动下&#xff0c;网页早已不再是静态信息的展示窗口。如今&#xff0c;我们可以在浏览器中体验逼真的3D游戏、交互式数据可视化、虚拟实验室&#xff0c;甚至沉浸式的V…...

ThreadLocal 源码

ThreadLocal 源码 此类提供线程局部变量。这些变量不同于它们的普通对应物&#xff0c;因为每个访问一个线程局部变量的线程&#xff08;通过其 get 或 set 方法&#xff09;都有自己独立初始化的变量副本。ThreadLocal 实例通常是类中的私有静态字段&#xff0c;这些类希望将…...

Linux基础开发工具——vim工具

文章目录 vim工具什么是vimvim的多模式和使用vim的基础模式vim的三种基础模式三种模式的初步了解 常用模式的详细讲解插入模式命令模式模式转化光标的移动文本的编辑 底行模式替换模式视图模式总结 使用vim的小技巧vim的配置(了解) vim工具 本文章仍然是继续讲解Linux系统下的…...