【图像分类】Yolov8 完整教程 |分类 |计算机视觉
目标:用YOLOV8进行图像分类。
图像分类器。
学习资源:https://www.youtube.com/watch?v=Z-65nqxUdl4
@努力的小巴掌 记录计算机视觉学习道路上的所思所得。
1、文件结构化
划分数据集:train,val,test
知道怎么划分数据集很重要。
文件夹下面有不同类别的图片。
train
-----dog
-----cat
val
-----dog
-----cat
test
-----dog
-----cat
2、YOLOV8做图片分类任务
方法1:
在python写脚本
首先,确保自己已经安装了ultralytics和numpy。
可以直接创建requirements.txt文件,写上这个:
ultralytics==8.0.58
numpy==1.24.2
然后pip install requirements.txt

参考官网给的文档:


Classify - Ultralytics YOLO Docs
创建main.py
from ultralytics import YOLO
# Load a model
# model = YOLO("yolov8n-cls.yaml") # build a new model from YAML
model = YOLO("yolov8n-cls.pt") # load a pretrained model (recommended for training)
# model = YOLO("yolov8n-cls.yaml").load("yolov8n-cls.pt") # build from YAML and transfer weights
# Train the model
results = model.train(data="数据集的的绝对路径", epochs=1, imgsz=64)
在本地运行时候,只是为了看看train.py能不能正常运行,所以,epocha设置成1;
data="数据集的的绝对路径",这里是放所有图片的那个总文件夹,就是train/val/test上面一级的,然后注意一定是绝对路径。

方法2
命令行
yolo classify train data='绝对路径' model=yolov8n-cls.pt epochs=1 imgsz=64
3、查看结果
结果保存在runs/classify下
4、分析结果
结果有3个,
weights:best.pt和last.pt 模型文件
args.yaml: 类似于配置文件,列出了我们训练时候的所有参数
results.csv:所有epochs的训练结果

其中我们重点关注,loss和accuracy。
我们要保证其损失是一直下降的。
数字不好看,我们用每个epoch的loss值画一个图像,可以直观的看。
创建画图脚本plot_metrics.py
代码:
import os
import pandas as pd
import matplotlib.pyplot as pltresults_path = './runs/classify/train14/results.csv'results = pd.read_csv(results_path)plt.figure()
plt.plot(results[' epoch'], results[' train/loss'], label='train loss')
plt.plot(results[' epoch'], results[' val/loss'], label='val loss', c='red')
plt.grid()
plt.title('Loss vs epochs')
plt.ylabel('loss')
plt.xlabel('epochs')
plt.legend()plt.figure()
plt.plot(results[' epoch'], results[' metrics/accuracy_top1'] * 100)
plt.grid()
plt.title('Validation accuracy vs epochs')
plt.ylabel('accuracy (%)')
plt.xlabel('epochs')plt.show()
结果类似于:

5、预测新图片
创建predict.py
from ultralytics import YOLO
# Load a model
model = YOLO("path/to/best.pt") # load a custom model
# Predict with the model
results = model("图片位置") # predict on an image
names_dict = results[0].names
probs = results[0].probs.tolist()
print(names_dict)
print(probs)
print(names_dict[np.argmax(probs)])

computervisioneng (Computer vision engineer) · GitHub
相关文章:
【图像分类】Yolov8 完整教程 |分类 |计算机视觉
目标:用YOLOV8进行图像分类。 图像分类器。 学习资源:https://www.youtube.com/watch?vZ-65nqxUdl4 努力的小巴掌 记录计算机视觉学习道路上的所思所得。 1、文件结构化 划分数据集:train,val,test 知道怎么划分数据集很重要。 文件夹…...
PyCharm 2024.1最新变化
PyCharm 2024.1 版本带来了一系列激动人心的新功能和改进,以下是一些主要的更新亮点: Hugging Face 模型和数据集文档预览:在 PyCharm 内部快速获取 Hugging Face 模型或数据集的详细信息,通过鼠标悬停或使用 F1 键打开文档工具窗口来预览。 …...
金融行业专题|某头部期货基于 K8s 原生存储构建自服务数据库云平台
为了进一步提升资源交付效率,不少用户都将数据库应用从物理环境迁移到容器环境。而对于 Kubernetes 部署环境,用户不仅需要考虑数据库在性能方面的需求,还要为数据存储提供更安全、可靠的高可用保障。 近期,某头部期货机构基于 S…...
DELL服务器 OpenManage监控指标解读
监控易是一款专业的IT基础设施监控软件,通过SNMP等多种方式,实时监控服务器、网络设备等IT资源的各项性能指标。对于DELL服务器 OpenManage,监控易提供了全面的监控解决方案,确保服务器的稳定运行。 一、网络连通性监控ÿ…...
vscode下无法识别node、npm的问题
node : 无法将“node”项识别为 cmdlet、函数、脚本文件或可运行程序的名称 因为node是在cmd安装的,是全局安装的,并不是在这个项目里安装的。 解决方案: 1.在vscode的控制台,针对一个项目安装特定版本的node; 2.已经…...
C语言之字符串处理函数
文章目录 1 字符串处理函数1.1 输入输出1.1.1 输出函数puts1.1.2 输入函数gets 1.2 连接函数1.2.1 stract1.2.2 strncat 1.3 复制1.3.1 复制strcpy1.3.2 复制strncpy1.3.3 复制memcpy1.3.4 指定复制memmove1.3.5 指定复制memset1.3.6 新建复制strdup1.3.7 字符串设定strset 1.4…...
昇思25天学习打卡营第4天|onereal
今天学习的内容是:ResNet50迁移学习 以下内容拷贝至教程,实话实话看不懂,迷迷糊糊都运行jupyter里的代码。走完程序,训练生成了一些图片。 ResNet50迁移学习 在实际应用场景中,由于训练数据集不足,所以很少…...
restTemplate使用总结
1、配置类 Configuration public class RestTemplateConfig() {Beanpublic RestTemplate restTemplate(ClientHttpRequestFactory factory) {return new RestTemplate(factory);}Beanpublic ClientHttpRequestFactory simpleClientHttpRequestFactory() {HttpComponentsClient…...
【云服务器介绍】选择指南 腾讯云 阿里云全配置对比 搭建web 个人开发 app 游戏服务器
省流目录:适用于博客建站(2-4G)、个人开发/小型游戏[传奇/我的世界/饥荒](4-8G)、数据分析/大型游戏[幻兽帕鲁/雾锁王国]服务器(16-64G) 1.京东云-618专属活动 官方采购季专属活动地址&#x…...
PostgreSQL 高级SQL查询(三)
1. JOIN 操作 1.1 内连接(INNER JOIN) 内连接用于返回两个表中存在匹配关系的记录。基本语法如下: SELECT columns FROM table1 INNER JOIN table2 ON table1.column table2.column;例如,从 users 表和 orders 表中检索所有用…...
麒麟系统安装Redis
一、背景 如前文(《麒麟系统安装MySQL》)所述。 二、下载Redis源码 官方未提供麒麟系统的Redis软件,须下载源码编译。 下载地址:https://redis.io/downloads 6.2.14版本源码下载地址:https://download.redis.io/re…...
Java-方法引用
方法引用概念 把已经有的方法拿过来用,当做函数式接口中抽象方法的方法体 前提条件 1、引用处必须是函数式接口 2、被引用的方法必须已经存在 3、被引用方法的形参和返回值 需要跟抽象方法保持一致 4、被引用方法的功能要满足当前需求 方法引用格式示例 方…...
华为---配置基本的访问控制列表(ACL)
11、访问控制列表(ACL) 11.1 配置基本的访问控制列表 11.1.1 原理概述 访问控制列表ACL(Access Control List)是由permit或deny语句组成的一系列有顺序的规则集合,这些规则根据数据包的源地址、目的地址、源端口、目的端口等信息来描述。A…...
Apple Intelligence,我们能得到什么?(上)
苹果公司WWDC 2024发布会,苹果AI成为最吸睛的焦点。不过,苹果的AI不是大家口中的AI,而是苹果独有的概念:Apple Intelligence,苹果智能。 所谓Apple Intelligence,被定义为iPhone、iPad和Mac的个人智能系统…...
【数据库中的存储桶】
存储桶是对象存储系统中的一个核心概念,起源于Amazon S3(Simple Storage Service)并被其他对象存储解决方案(如MinIO、Google Cloud Storage等)广泛采用。在传统的文件系统中,我们通常使用目录和子目录来组…...
多选项卡的shiny
下面是一个包含多个选项卡的 Shiny 应用程序示例代码。在这个例子中,我们创建了一个包含三个选项卡的 Shiny 应用程序,每个选项卡中都有不同的内容。 library(shiny)# Define UI ui <- fluidPage(titlePanel("多选项卡 Shiny 应用"),tabse…...
Python项目Django框架发布相关
1.Nginx配置 server { listen 80; server_name 域名地址;location / { uwsgi_pass 0.0.0.0:4563;// 运行地址include uwsgi_params;} location /static{ // 静态文件路径alias /www/wwwroot/djserverproject/static;}}server { listen 443; server_name 域名地址;ssl_certific…...
kettle使用手册 安装9.0版本 建议设置为英语
0.新建转换的常用组件 0. Generate rows 定义一个字符串 name value就是字符串的值 0.1 String operations 字段转大写 去空格 1. Json input 来源于一个json文件 1.json 或mq接收到的data内容是json字符串 2. Json output 定义Jsonbloc值为 data, 左侧Fieldname是数据库…...
golang string、byte[]以及rune的基本概念,用法以及区别
在 Go 语言中,string、byte[] 和 rune 是处理文本和字符的三种不同数据类型。它们有各自的用途和特点,下面将详细介绍它们的基本概念、用法以及区别。 1. string 基本概念 字符串类型:string 是 Go 语言中的一种基本类型,用于表…...
全国211大学名单及排名
序号 名称 省份 985 211 双一流 1 北京大学 北京 是 是 是 2 清华大学 北京 是 是 是 3 复旦大学 上海 是 是 是 4 上海交通大学 上海 是 是 是 5 浙江大学 浙江 是 是 是 6 国防科技大学 湖南 是 是 是 7 中国人民大学 北京 是 …...
Lombok 的 @Data 注解失效,未生成 getter/setter 方法引发的HTTP 406 错误
HTTP 状态码 406 (Not Acceptable) 和 500 (Internal Server Error) 是两类完全不同的错误,它们的含义、原因和解决方法都有显著区别。以下是详细对比: 1. HTTP 406 (Not Acceptable) 含义: 客户端请求的内容类型与服务器支持的内容类型不匹…...
【JavaEE】-- HTTP
1. HTTP是什么? HTTP(全称为"超文本传输协议")是一种应用非常广泛的应用层协议,HTTP是基于TCP协议的一种应用层协议。 应用层协议:是计算机网络协议栈中最高层的协议,它定义了运行在不同主机上…...
Spring Boot 实现流式响应(兼容 2.7.x)
在实际开发中,我们可能会遇到一些流式数据处理的场景,比如接收来自上游接口的 Server-Sent Events(SSE) 或 流式 JSON 内容,并将其原样中转给前端页面或客户端。这种情况下,传统的 RestTemplate 缓存机制会…...
Admin.Net中的消息通信SignalR解释
定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...
循环冗余码校验CRC码 算法步骤+详细实例计算
通信过程:(白话解释) 我们将原始待发送的消息称为 M M M,依据发送接收消息双方约定的生成多项式 G ( x ) G(x) G(x)(意思就是 G ( x ) G(x) G(x) 是已知的)࿰…...
服务器硬防的应用场景都有哪些?
服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式,避免服务器受到各种恶意攻击和网络威胁,那么,服务器硬防通常都会应用在哪些场景当中呢? 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...
Python实现prophet 理论及参数优化
文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候,写过一篇简单实现,后期随着对该模型的深入研究,本次记录涉及到prophet 的公式以及参数调优,从公式可以更直观…...
srs linux
下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935,SRS管理页面端口是8080,可…...
跨链模式:多链互操作架构与性能扩展方案
跨链模式:多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈:模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展(H2Cross架构): 适配层…...
从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)
设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile,新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...
