当前位置: 首页 > news >正文

【深度学习】记录为什么没有调用GPU

排查CLIP为什么评测推理没有调用GPU,主要是这个代码:https://github.com/OFA-Sys/Chinese-CLIP/blob/master/cn_clip/eval/extract_features.py

第一次认为:因为model并没有to.cuda()。
但是又发现,model.cuda(args.gpu) # 已经加载到GPU上了。
并且,pytorch中 model.cuda() 和mode.to(cuda) 没有区别。

第二次,还是在P40上启动一下,使用nvidia-smi看看GPU是否被使用了。

以下from GPT-4o,
在使用图像模型提取图片特征时,GPU利用率为0可能是由于多种原因导致的。以下是一些常见的原因和解决方法:

1. 确认使用了GPU

确保你的代码实际上是使用了GPU而不是CPU。以下是一些检查和设置GPU使用的步骤:

  • TensorFlow:

    import tensorflow as tf
    print("Num GPUs Available: ", len(tf.config.list_physical_devices('GPU')))
    
  • PyTorch:

    import torch
    print("Is CUDA available: ", torch.cuda.is_available())
    

2. 确认GPU驱动和CUDA版本

确保你安装了正确版本的GPU驱动和CUDA工具包,并且它们与所使用的深度学习框架兼容。

  • 检查CUDA版本:

    nvcc --version
    
  • 检查驱动版本:

    nvidia-smi
    

3. 确认模型和数据在GPU上

确保你的模型和数据都被正确地加载到GPU上。

  • TensorFlow:

    with tf.device('/GPU:0'):# Your model and data operations
    
  • PyTorch:

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model.to(device)
    inputs = inputs.to(device)
    

4. 检查批处理大小

如果批处理大小(batch size)太小,GPU利用率可能会很低。尝试增加批处理大小以更好地利用GPU。

5. 确认数据加载器的效率

数据加载器可能成为瓶颈,导致GPU等待数据。确保数据加载器使用了多线程或多进程来加速数据加载。

  • TensorFlow:

    dataset = dataset.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)
    
  • PyTorch:

    data_loader = torch.utils.data.DataLoader(dataset, batch_size=32, num_workers=4, pin_memory=True)
    

6. 确认模型推理代码

确保你在进行特征提取时,模型推理代码没有问题,并且确实在GPU上运行。

7. 确认没有GPU内存不足

如果GPU内存不足,可能会导致程序回退到CPU。使用nvidia-smi查看GPU内存使用情况。

8. 确认GPU没有被其他进程占用

使用nvidia-smi查看当前GPU的使用情况,确保没有其他进程占用GPU资源。

9. 检查框架和库的版本

确保你使用的深度学习框架和相关库是最新版本,因为旧版本可能存在性能问题或不支持某些功能。

10. 检查代码逻辑

确保你的代码逻辑没有问题,特别是数据预处理和模型推理部分。

示例代码

以下是一个简单的示例代码,展示了如何在PyTorch中确保模型和数据在GPU上运行:

import torch
import torchvision.models as models
from torchvision import transforms
from PIL import Image# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")# 加载预训练模型并将其移动到GPU
model = models.resnet50(pretrained=True)
model = model.to(device)
model.eval()# 加载并预处理图像
image = Image.open("path_to_image.jpg")
preprocess = transforms.Compose([transforms.Resize(256),transforms.CenterCrop(224),transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
input_tensor = preprocess(image)
input_batch = input_tensor.unsqueeze(0)  # 创建一个批次# 将输入数据移动到GPU
input_batch = input_batch.to(device)# 确保模型在GPU上进行推理
with torch.no_grad():output = model(input_batch)# 提取特征
features = output.cpu().numpy()
print(features)

通过上述步骤和检查,你应该能够找到GPU利用率为0的原因并解决问题。

相关文章:

【深度学习】记录为什么没有调用GPU

排查CLIP为什么评测推理没有调用GPU,主要是这个代码:https://github.com/OFA-Sys/Chinese-CLIP/blob/master/cn_clip/eval/extract_features.py 第一次认为:因为model并没有to.cuda()。 但是又发现,model.cuda(args.gpu) # 已经加…...

vite 创建vue3项目 集成 ESLint、Prettier、Sass等

在网上找了一大堆vue3脚手架的东西,无非就是vite或者vue-cli,在vue2时代,vue-cli用的人挺多的,也很好用,然而vue3大多是和vite搭配搭建的,而且个人感觉vite这个脚手架并没有那么的好用,搭建项目时只能做两个…...

计算机系统基础知识(上)

目录 计算机系统的概述 计算机的硬件 处理器 存储器 总线 接口 外部设备 计算机的软件 操作系统 数据库 文件系统 计算机系统的概述 如图所示计算机系统分为软件和硬件:硬件包括:输入输出设备、存储器,处理器 软件则包括系统软件和…...

[深度学习]循环神经网络RNN

RNN(Recurrent Neural Network,即循环神经网络)是一类用于处理序列数据的神经网络,广泛应用于自然语言处理(NLP)、时间序列预测、语音识别等领域。与传统的前馈神经网络不同,RNN具有循环结构&am…...

【C++:list】

list概念 list是一个带头的双向循环链表,双向循环链表的特色:每一个节点拥有两 个指针进行维护,俩指针分别为prev和next,prev指该节点的前一个节点,next为该节点的后一个节点 list的底层实现中为什么对迭代器单独写一个结构体进行…...

解锁 Apple M1/M2 上的深度学习力量:安装 TensorFlow 完全指南

前言 随着 Apple M1 和 M2 芯片的问世,苹果重新定义了笔记本电脑和台式机的性能标准。这些强大的芯片不仅适用于日常任务,还能处理复杂的机器学习和深度学习工作负载。本文将详细介绍如何在 Apple M1 或 M2 芯片上安装和配置 TensorFlow,助你…...

Apache Iceberg:现代数据湖存储格式的未来

Apache Iceberg 是一个开源的表格式,用于在分布式数据湖中管理大规模数据集。它由 Netflix 开发,并捐赠给 Apache 基金会。Iceberg 的设计目标是解决传统数据湖存储格式(如 Apache Hive 和 Apache Parquet)在大规模数据管理中的一…...

【离散数学·图论】(复习)

一、基本概念 1.一些基本术语: 2.点u,v邻接(或相邻): 边e称为关联顶点u和v,or e连接u和v; 3.G(V,E)中,顶点v所有邻居的集合:N(v), 成为v的邻域。 4.度 : deg(v) 5.悬挂点:度为1的…...

【ONLYOFFICE震撼8.1】ONLYOFFICE8.1版本桌面编辑器测评

随着远程工作的普及和数字化办公的发展,越来越多的人开始寻找一款具有强大功能和便捷使用的办公软件。在这个时候,ONLYOFFICE 8.1应运而生,成为了许多用户的新选择。ONLYOFFICE 8.1是一种办公套件软件,它提供了文档处理、电子表格…...

Shell 脚本编程保姆级教程(上)

一、运行第一个 Shell 脚本 1.1 Shell 脚本 Shell 脚本(shell script),是一种为 shell 编写的脚本程序。 业界所说的 shell 通常都是指 shell 脚本,但读者朋友要知道,shell 和 shell script 是两个不同的概念。 由…...

凸优化相关文章汇总

深度学习/机器学习入门基础数学知识整理(三):凸优化,Hessian,牛顿法_深度学习和凸优化-CSDN博客 深度学习/机器学习入门基础数学知识整理(四):拟牛顿法、BFGS、L-BFGS、DFP、共轭梯…...

Java鲜花下单预约系统源码小程序源码

让美好触手可及 🌸一、开启鲜花新篇章 在繁忙的都市生活中,我们总是渴望那一抹清新与美好。鲜花,作为大自然的馈赠,总能给我们带来无尽的惊喜与愉悦。但你是否曾因为工作繁忙、时间紧张而错过了亲自挑选鲜花的机会?今…...

网络变压器和RJ45接线的方法

网络变压器在以太网硬件电路设计中扮演着重要的角色,它主要用于信号电平耦合、隔离外部干扰、实现阻抗匹配以及增加传输距离。而RJ45接口则是以太网连接的标准化接口,它提供了与网络电缆的连接点。 网络变压器与RJ45的接线方法通常遵循以下步骤&#xf…...

Matlab/simulink三段式电流保护

电流1段仿真波形如下所示 电流2段仿真波形如下所示 电流3段仿真波形如下所示...

OOXML入门学习

进入-飞入 <par> <!-- 这是一个并行动画序列的开始。"par"代表并行&#xff0c;意味着在这个标签内的所有动画将同时开始。 --><cTn id"5" presetID"2" presetClass"entr" presetSubtype"4" fill"hold&…...

k8s集群node节点加入失败

出现这种情况&#xff1a; [preflight] FYI: You can look at this config file with kubectl -n kube-system get cm kubeadm-config -o yaml [kubelet-start] Writing kubelet configuration to file "/var/lib/kubelet/config.yaml" [kubelet-start] Writing kub…...

layui+jsp项目中实现table单元格嵌入下拉选择框功能,下拉选择框可手动输入内容或选择默认值,修改后数据正常回显。

需求 table列表中的数据实现下拉框修改数据&#xff0c;当默认的下拉框不符合要求时&#xff0c;可手动输入内容保存。内容修改后表格显示修改后的值同时表格不刷新。 实现 layui框架下拉框组件只能选择存在的数据&#xff0c;不支持将输入的内容显示在input中的功能&#x…...

2024年客户体验的几个预测

数字化转型、以客户为中心的理念、数字技术的发展和产品的不断创新&#xff0c;都为客户体验带来了巨大的改变。 目前&#xff0c;我们看到很多公司都在致力于塑造一种以客户为中心的商业模式。企业开始用更多技术、更多数据和更多产品来强化自己在客户体验方面的能力。 那么&a…...

【C++】动态内存管理new和delete

文章目录 一、C的内存管理方式二、new和delete的用法1.操作内置类型2.操作自定义内置类型 三、new和delete的底层实现1.operator new和operator delete函数2.new和delete的实现原理 四、定位new表达式五、malloc/free和new/delete的区别 一、C的内存管理方式 之前在C语言的动态…...

Java面向对象特性

Java继承&#xff1a; 继承的概念&#xff1a; 在Java中&#xff0c;继承&#xff08;inheritance&#xff09;是面向对象编程的一个重要概念&#xff0c;它允许一个类&#xff08;子类&#xff09;继承另一个类&#xff08;父类&#xff09;的属性和方法。通过继承&#xff0c…...

将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?

Otsu 是一种自动阈值化方法&#xff0c;用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理&#xff0c;能够自动确定一个阈值&#xff0c;将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...

Psychopy音频的使用

Psychopy音频的使用 本文主要解决以下问题&#xff1a; 指定音频引擎与设备&#xff1b;播放音频文件 本文所使用的环境&#xff1a; Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...

大学生职业发展与就业创业指导教学评价

这里是引用 作为软工2203/2204班的学生&#xff0c;我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要&#xff0c;而您认真负责的教学态度&#xff0c;让课程的每一部分都充满了实用价值。 尤其让我…...

Typeerror: cannot read properties of undefined (reading ‘XXX‘)

最近需要在离线机器上运行软件&#xff0c;所以得把软件用docker打包起来&#xff0c;大部分功能都没问题&#xff0c;出了一个奇怪的事情。同样的代码&#xff0c;在本机上用vscode可以运行起来&#xff0c;但是打包之后在docker里出现了问题。使用的是dialog组件&#xff0c;…...

C# 求圆面积的程序(Program to find area of a circle)

给定半径r&#xff0c;求圆的面积。圆的面积应精确到小数点后5位。 例子&#xff1a; 输入&#xff1a;r 5 输出&#xff1a;78.53982 解释&#xff1a;由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982&#xff0c;因为我们只保留小数点后 5 位数字。 输…...

初学 pytest 记录

安装 pip install pytest用例可以是函数也可以是类中的方法 def test_func():print()class TestAdd: # def __init__(self): 在 pytest 中不可以使用__init__方法 # self.cc 12345 pytest.mark.api def test_str(self):res add(1, 2)assert res 12def test_int(self):r…...

听写流程自动化实践,轻量级教育辅助

随着智能教育工具的发展&#xff0c;越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式&#xff0c;也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建&#xff0c;…...

处理vxe-table 表尾数据是单独一个接口,表格tableData数据更新后,需要点击两下,表尾才是正确的

修改bug思路&#xff1a; 分别把 tabledata 和 表尾相关数据 console.log() 发现 更新数据先后顺序不对 settimeout延迟查询表格接口 ——测试可行 升级↑&#xff1a;async await 等接口返回后再开始下一个接口查询 ________________________________________________________…...

【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)

本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...

Python 实现 Web 静态服务器(HTTP 协议)

目录 一、在本地启动 HTTP 服务器1. Windows 下安装 node.js1&#xff09;下载安装包2&#xff09;配置环境变量3&#xff09;安装镜像4&#xff09;node.js 的常用命令 2. 安装 http-server 服务3. 使用 http-server 开启服务1&#xff09;使用 http-server2&#xff09;详解 …...