当前位置: 首页 > news >正文

【离散数学·图论】(复习)

一、基本概念

1.一些基本术语:

2.点u,v邻接(或相邻): 边e称为关联顶点u和v,or e连接u和v;

3.G=(V,E)中,顶点v所有邻居的集合:N(v), 成为v的邻域。

4.度 : deg(v)

5.悬挂点:度为1的顶点;

6.孤立点:度为0的顶点。

二、几个定理and概念

1.握手定理:边数的2倍=度数。  (总度数一定为偶数

2.无向图有偶数个奇数度顶点。 (由1.) (定理2)

3.度:deg^{-}(v) ;   度:deg^{+}(v)

4.有向图,边数=入度=出度   (定理3)

5.完全图:K_{n}  , 每个顶点的度:n-1

6.圈图:C_{n}

7.轮图:W_{n}  顶点数:n+1,边数:2n

8.立方体图:Q_{n}   顶点数:2^n,边数: n*(2^(n-1))

9.二部图(二分图):用颜色判断

10.完全二部图 K_{m,n}

11.从旧图到新图: (子图,并图等)

12.加权图 : 边上带权重

三、图的表示

1.邻接表

2.邻接矩阵

3.关联矩阵:

当ej关联vi时 :1;or : 0;

四、其它概念

1.图的同构:

对于G1(V1,E1),G2(V2,E2) ,存在映上的从V1到V2 的函数f;

f性质:对所有a,b  a和b在G1里相邻<->a和b在G2里相邻。

2.通路:从u到v,  (边的序列)

            长度:通路中的数目

                      对于权重图,则为各边的权重之和。

   回路:若一条通路在相同的顶点开始和结束,且长度大于0,则它是一条回路。

   若通路或回路不重复的包含相同的边,那么它就是简单的

   各边全不同的:简单回路;

   各点全不同的:基本回路;

3.可达性:vi到vj从在通路(不管长度)。

4.无向图连通性:

连通图:每一对顶点间都有一条路径;

or : 不连通图;

5.连通分量:是G的连通子图,而不是G的其它连通子图的真子图。(即G的最大连通子图)

6.有向图连通性:

(1)强连通:对任意a,b  a到b有,b到a也有;

(2)弱连通:在有向图的基本无向图中是连通的;

7.计算顶点间的通路:用矩阵相乘。

五、欧拉回/通路  (可一笔画出)  (边不重复)

1.欧拉回路 充要: 所有顶点度数都为偶数;

2.欧拉通路 充要:有2个顶点度数为奇数,其它为偶数。

六、哈密顿回/通路 (点不重复)  (无充要条件)

1.哈回=>....  (性质)

   定理:

2....=>哈

定理:

3....=>哈回

(1)狄拉克定理:

(2)奥尔定理:

例:

答:m=n>=2;

七、平面图与着色:

1.欧拉公式:

设G是带e条边和v个顶点的连通平面简单图。设r是G的平面图表示中的面数,则 r=e-v+2。

2.图着色

简单图的着色:给每个顶点都指定一种颜色,使没有两个相邻的顶点颜色相同。

(平面图的着色数不超过4)

相关文章:

【离散数学·图论】(复习)

一、基本概念 1.一些基本术语&#xff1a; 2.点u&#xff0c;v邻接&#xff08;或相邻&#xff09;: 边e称为关联顶点u和v,or e连接u和v; 3.G(V,E)中&#xff0c;顶点v所有邻居的集合&#xff1a;N(v), 成为v的邻域。 4.度 &#xff1a; deg(v) 5.悬挂点&#xff1a;度为1的…...

【ONLYOFFICE震撼8.1】ONLYOFFICE8.1版本桌面编辑器测评

随着远程工作的普及和数字化办公的发展&#xff0c;越来越多的人开始寻找一款具有强大功能和便捷使用的办公软件。在这个时候&#xff0c;ONLYOFFICE 8.1应运而生&#xff0c;成为了许多用户的新选择。ONLYOFFICE 8.1是一种办公套件软件&#xff0c;它提供了文档处理、电子表格…...

Shell 脚本编程保姆级教程(上)

一、运行第一个 Shell 脚本 1.1 Shell 脚本 Shell 脚本&#xff08;shell script&#xff09;&#xff0c;是一种为 shell 编写的脚本程序。 业界所说的 shell 通常都是指 shell 脚本&#xff0c;但读者朋友要知道&#xff0c;shell 和 shell script 是两个不同的概念。 由…...

凸优化相关文章汇总

深度学习/机器学习入门基础数学知识整理&#xff08;三&#xff09;&#xff1a;凸优化&#xff0c;Hessian&#xff0c;牛顿法_深度学习和凸优化-CSDN博客 深度学习/机器学习入门基础数学知识整理&#xff08;四&#xff09;&#xff1a;拟牛顿法、BFGS、L-BFGS、DFP、共轭梯…...

Java鲜花下单预约系统源码小程序源码

让美好触手可及 &#x1f338;一、开启鲜花新篇章 在繁忙的都市生活中&#xff0c;我们总是渴望那一抹清新与美好。鲜花&#xff0c;作为大自然的馈赠&#xff0c;总能给我们带来无尽的惊喜与愉悦。但你是否曾因为工作繁忙、时间紧张而错过了亲自挑选鲜花的机会&#xff1f;今…...

网络变压器和RJ45接线的方法

网络变压器在以太网硬件电路设计中扮演着重要的角色&#xff0c;它主要用于信号电平耦合、隔离外部干扰、实现阻抗匹配以及增加传输距离。而RJ45接口则是以太网连接的标准化接口&#xff0c;它提供了与网络电缆的连接点。 网络变压器与RJ45的接线方法通常遵循以下步骤&#xf…...

Matlab/simulink三段式电流保护

电流1段仿真波形如下所示 电流2段仿真波形如下所示 电流3段仿真波形如下所示...

OOXML入门学习

进入-飞入 <par> <!-- 这是一个并行动画序列的开始。"par"代表并行&#xff0c;意味着在这个标签内的所有动画将同时开始。 --><cTn id"5" presetID"2" presetClass"entr" presetSubtype"4" fill"hold&…...

k8s集群node节点加入失败

出现这种情况&#xff1a; [preflight] FYI: You can look at this config file with kubectl -n kube-system get cm kubeadm-config -o yaml [kubelet-start] Writing kubelet configuration to file "/var/lib/kubelet/config.yaml" [kubelet-start] Writing kub…...

layui+jsp项目中实现table单元格嵌入下拉选择框功能,下拉选择框可手动输入内容或选择默认值,修改后数据正常回显。

需求 table列表中的数据实现下拉框修改数据&#xff0c;当默认的下拉框不符合要求时&#xff0c;可手动输入内容保存。内容修改后表格显示修改后的值同时表格不刷新。 实现 layui框架下拉框组件只能选择存在的数据&#xff0c;不支持将输入的内容显示在input中的功能&#x…...

2024年客户体验的几个预测

数字化转型、以客户为中心的理念、数字技术的发展和产品的不断创新&#xff0c;都为客户体验带来了巨大的改变。 目前&#xff0c;我们看到很多公司都在致力于塑造一种以客户为中心的商业模式。企业开始用更多技术、更多数据和更多产品来强化自己在客户体验方面的能力。 那么&a…...

【C++】动态内存管理new和delete

文章目录 一、C的内存管理方式二、new和delete的用法1.操作内置类型2.操作自定义内置类型 三、new和delete的底层实现1.operator new和operator delete函数2.new和delete的实现原理 四、定位new表达式五、malloc/free和new/delete的区别 一、C的内存管理方式 之前在C语言的动态…...

Java面向对象特性

Java继承&#xff1a; 继承的概念&#xff1a; 在Java中&#xff0c;继承&#xff08;inheritance&#xff09;是面向对象编程的一个重要概念&#xff0c;它允许一个类&#xff08;子类&#xff09;继承另一个类&#xff08;父类&#xff09;的属性和方法。通过继承&#xff0c…...

odoo17 tree视图添加按钮

需求描述 点击下图中tree视图上的同步退货单按钮,弹出相应的form视图进行退货单同步,然后点击同步按钮调用后端python代码处理。 实现步骤 主要文件目录结构 js文件的创建 /** @odoo-module **/ import {registry } from "@web/core/registry"; import {listVie…...

PreparedStatement 与Statement 的区别,以及为什么推荐使用 PreparedStatement ?

在Java中&#xff0c;PreparedStatement和Statement都是用于执行SQL语句的重要接口&#xff0c;但它们在功能、安全性和性能上有着显著的差异。理解这些差异对于编写高效且安全的数据库应用程序至关重要。 Statement&#xff1a;基本的SQL执行者 首先&#xff0c;让我们从Sta…...

wsl ubuntu 安装Anaconda3步骤

如何在Ubuntu上安装Anaconda3呢?本章记录整个安装过程。 1、下载脚本 https://mirrors.bfsu.edu.cn/anaconda/archive/Anaconda3-2023.09-0-Linux-x86_64.sh 下载之后,将脚本上传到Ubuntu里。 2、安装脚本 bash Anaconda3-2021.11-Linux-x86_64.sh根据提示进行安装,提示输…...

Vue3响应式 ref全家桶

<template><div>{{ man.name }}<hr><button click"change">修改</button></div> </template> <script setup lang"ts"> const man {name:"cc"} const change () >{man.name "大cc&q…...

Mac(M1芯片)安装多个jdk,Mac卸载jdk

1.jdk下载 oracle官方链接&#xff1a;oracle官方下载链接 2.安装 直接下一步&#xff0c;下一步就行 3.查看是否安装成功 出现下图内容表示安装成功。 4.配置环境变量 open -e .bash_profile 路径建议复制过去 #刷新环境变量 source ~/.bash_profile 5.切换方法 6.jdk…...

Warning message:package ‘ggplot2’ is not available (for R version 3.2.3)

install.packages(ggplot2) Installing package into ‘/usr/local/lib/R/site-library’ (as ‘lib’ is unspecified) Warning message: package ‘ggplot2’ is not available (for R version 3.2.3) 根据你提供的信息&#xff0c;警告消息表明在你的R版本&#xff08;3.2.3…...

Spring Boot 过滤器和拦截器详解

目录 Spring Boot 过滤器1.什么是过滤器2.工作机制3.实现过滤器 Spring Boot 拦截器1. 什么是拦截器2. 工作原理3.实现4.拓展&#xff08;MethodInterceptor 拦截器&#xff09;实现 过滤器和拦截器区别过滤器和拦截器应用场景过滤器拦截器 Spring Boot 过滤器 1.什么是过滤器 …...

docker详细操作--未完待续

docker介绍 docker官网: Docker&#xff1a;加速容器应用程序开发 harbor官网&#xff1a;Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台&#xff0c;用于将应用程序及其依赖项&#xff08;如库、运行时环…...

Leetcode 3576. Transform Array to All Equal Elements

Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接&#xff1a;3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到&#xf…...

生成 Git SSH 证书

&#x1f511; 1. ​​生成 SSH 密钥对​​ 在终端&#xff08;Windows 使用 Git Bash&#xff0c;Mac/Linux 使用 Terminal&#xff09;执行命令&#xff1a; ssh-keygen -t rsa -b 4096 -C "your_emailexample.com" ​​参数说明​​&#xff1a; -t rsa&#x…...

[Java恶补day16] 238.除自身以外数组的乘积

给你一个整数数组 nums&#xff0c;返回 数组 answer &#xff0c;其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法&#xff0c;且在 O(n) 时间复杂度…...

管理学院权限管理系统开发总结

文章目录 &#x1f393; 管理学院权限管理系统开发总结 - 现代化Web应用实践之路&#x1f4dd; 项目概述&#x1f3d7;️ 技术架构设计后端技术栈前端技术栈 &#x1f4a1; 核心功能特性1. 用户管理模块2. 权限管理系统3. 统计报表功能4. 用户体验优化 &#x1f5c4;️ 数据库设…...

JVM 内存结构 详解

内存结构 运行时数据区&#xff1a; Java虚拟机在运行Java程序过程中管理的内存区域。 程序计数器&#xff1a; ​ 线程私有&#xff0c;程序控制流的指示器&#xff0c;分支、循环、跳转、异常处理、线程恢复等基础功能都依赖这个计数器完成。 ​ 每个线程都有一个程序计数…...

4. TypeScript 类型推断与类型组合

一、类型推断 (一) 什么是类型推断 TypeScript 的类型推断会根据变量、函数返回值、对象和数组的赋值和使用方式&#xff0c;自动确定它们的类型。 这一特性减少了显式类型注解的需要&#xff0c;在保持类型安全的同时简化了代码。通过分析上下文和初始值&#xff0c;TypeSc…...

数学建模-滑翔伞伞翼面积的设计,运动状态计算和优化 !

我们考虑滑翔伞的伞翼面积设计问题以及运动状态描述。滑翔伞的性能主要取决于伞翼面积、气动特性以及飞行员的重量。我们的目标是建立数学模型来描述滑翔伞的运动状态,并优化伞翼面积的设计。 一、问题分析 滑翔伞在飞行过程中受到重力、升力和阻力的作用。升力和阻力与伞翼面…...

boost::filesystem::path文件路径使用详解和示例

boost::filesystem::path 是 Boost 库中用于跨平台操作文件路径的类&#xff0c;封装了路径的拼接、分割、提取、判断等常用功能。下面是对它的使用详解&#xff0c;包括常用接口与完整示例。 1. 引入头文件与命名空间 #include <boost/filesystem.hpp> namespace fs b…...

如何通过git命令查看项目连接的仓库地址?

要通过 Git 命令查看项目连接的仓库地址&#xff0c;您可以使用以下几种方法&#xff1a; 1. 查看所有远程仓库地址 使用 git remote -v 命令&#xff0c;它会显示项目中配置的所有远程仓库及其对应的 URL&#xff1a; git remote -v输出示例&#xff1a; origin https://…...