逻辑回归模型模拟实现:从零开始
引言
逻辑回归是一种用于二分类问题的机器学习算法。尽管它的名字中有“回归”,但它实际上是用于分类的。在本文中,我们将通过模拟数据来演示逻辑回归模型的实现。
逻辑回归简介
逻辑回归通过使用逻辑函数(通常是Sigmoid函数)将线性回归的输出映射到0和1之间,从而预测二元结果的概率。
模拟数据
我们将模拟一些二维数据,其中特征和标签是随机生成的。
安装必要的库
pip install numpy scikit-learn matplotlib
模拟数据和模型实现
import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import matplotlib.pyplot as plt# 设置随机种子以确保结果可复现
np.random.seed(0)# 模拟数据:100个样本,每个样本2个特征
n_samples = 100
X = np.random.randn(n_samples, 2) # 特征
true_prob = 1 / (1 + np.exp(-(X[:, 0] + X[:, 1]))) # 真实概率# 添加噪声到真实概率以模拟实际数据
y = np.random.binomial(1, true_prob, size=n_samples)# 划分数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 创建逻辑回归模型实例
model = LogisticRegression()# 训练模型
model.fit(X_train, y_train)# 预测测试集
y_pred = model.predict(X_test)# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy}")# 可视化决策边界
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.1),np.arange(y_min, y_max, 0.1))Z = model.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)plt.contourf(xx, yy, Z, alpha=0.4)
plt.scatter(X[:, 0], X[:, 1], c=y, edgecolors='k', s=20)
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.title('Decision Boundary of the Logistic Regression Model')
plt.show()
结论
通过上述代码,我们模拟了数据并训练了一个逻辑回归模型。我们还可视化了决策边界,这有助于我们理解模型是如何区分不同类别的。
相关文章:
逻辑回归模型模拟实现:从零开始
引言 逻辑回归是一种用于二分类问题的机器学习算法。尽管它的名字中有“回归”,但它实际上是用于分类的。在本文中,我们将通过模拟数据来演示逻辑回归模型的实现。 逻辑回归简介 逻辑回归通过使用逻辑函数(通常是Sigmoid函数)将…...
Docker基本使用和认识
目录 基本使用 镜像仓库 镜像操作 Docker 如何实现镜像 1) namespace 2) cgroup 3) LXC Docker常见的网络类型 bridge网络如何实现 基本使用 镜像仓库 镜像仓库登录 1)docker login 后面不指定IP地址,则默认登录到 docker hub 上 退出 2)docker logo…...
Halcon 文本文件操作,形态学
一文件的读写 *******************************************************向文本文件写入字符串内容*************************************************************read_image (Image, fabrik)threshold (Image, Region, 0, 120)area_center (Region, Area, Row, Column)open_…...
【鸿蒙】稍微理解一下Stage模型
鸿蒙的Stage模型是HarmonyOS多端统一的应用开发框架中的一个核心概念,用于描述应用的界面层次结构和组件之间的关系。下面将详细解析Stage模型的主要组成部分和特点: 模型组成: UIAbility组件:这是应用中负责绘制用户界面的组件&a…...
毕业答辩制作PPT【攻略】
毕业答辩制作PPT【攻略】 前言版权毕业答辩制作PPT【攻略】一、WPS AI 15天免费会员二、AI文档生成PPT三、修改完善PPT 最后 前言 2024-06-14 23:43:05 以下内容源自《【攻略】》 仅供学习交流使用 版权 禁止其他平台发布时删除以下此话 本文首次发布于CSDN平台 作者是CSDN…...
深入解析npm install --save-dev:开发依赖管理的艺术
npm(Node Package Manager)是JavaScript编程语言的包管理器,用于管理项目中的依赖关系。在开发过程中,合理地管理依赖是保证项目可维护性和可扩展性的关键。npm install命令是npm中最常用的命令之一,而--save-dev参数则…...
福布斯 AI 50 榜单中唯一开源向量数据库:Weaviate
本篇文章,聊聊福布斯全球网站前俩月发布的 2023 AI 50 榜单中的唯一一个开源的向量数据库:Weaviate。 它在数据持久化和容错性上表现非常好、支持混合搜索、支持水平扩展,同时又保持了轻量化。官方主打做 AI 时代的原生数据库,减…...
信息学奥赛初赛天天练-38-CSP-J2021阅读程序-约数个数、约数和、埃氏筛法、欧拉筛法筛素数应用
PDF文档公众号回复关键字:20240628 2021 CSP-J 阅读程序3 1阅读程序(判断题1.5分 选择题3分 共计40分 ) 01 #include<stdio.h> 02 using namespace std; 03 04 #define n 100000 05 #define N n1 06 07 int m; 08 int a[N],b[N],c[N],d[N]; 09 int f[N],g[N]; 10 11 …...
第100+13步 ChatGPT学习:R实现决策树分类
基于R 4.2.2版本演示 一、写在前面 有不少大佬问做机器学习分类能不能用R语言,不想学Python咯。 答曰:可!用GPT或者Kimi转一下就得了呗。 加上最近也没啥内容写了,就帮各位搬运一下吧。 二、R代码实现决策树分类 (…...
Hi3861 OpenHarmony嵌入式应用入门--LiteOS MessageQueue
CMSIS 2.0接口中的消息(Message)功能主要涉及到实时操作系统(RTOS)中的线程间通信。在CMSIS 2.0标准中,消息通常是通过消息队列(MessageQueue)来进行处理的,以实现不同线程之间的信息…...
ffmpeg编码图象时报错Invalid buffer size, packet size * < expected frame_size *
使用ffmpeg将单个yuv文件编码转为jpg或其他图像格式时,报错: Truncating packet of size 11985408 to 3585 [rawvideo 0x1bd5390] Packet corrupt (stream 0, dts 1). image_3264_2448_0.yuv: corrupt input packet in stream 0 [rawvideo 0x1bd7c60…...
解决类重复的问题
1.针对AndroidX 类重复问题 解决办法: android.useAndroidXtrue android.enableJetifiertrue2.引用其他sdk出现类重复的问题解决办法:configurations {all { // You should exclude one of them not both of themexclude group: "com.enmoli"…...
使用 shell 脚本 统计app冷启动耗时
下面是一个 shell 脚本,它使用 参数将包名称作为参数--app,识别相应应用程序进程的 PID,使用 终止该进程adb shell kill,最后使用 重新启动该应用程序adb shell am start: #!/bin/bash# Check if package name is pro…...
使用容器部署redis_设置配置文件映射到本地_设置存储数据映射到本地_并开发java应用_连接redis---分布式云原生部署架构搭建011
可以看到java应用的部署过程,首先我们要准备一个java应用,并且我们,用docker,安装一个redis 首先我们去start.spring.io 去生成一个简单的web项目,然后用idea打开 选择以后下载 放在这里,然后我们去安装redis 在公共仓库中找到redis . 可以看到它里面介绍说把数据放到了/dat…...
第五节:如何使用其他注解方式从IOC中获取bean(自学Spring boot 3.x的第一天)
大家好,我是网创有方,上节我们实践了通过Bean方式声明Bean配置。咱们这节通过Component和ComponentScan方式实现一个同样功能。这节实现的效果是从IOC中加载Bean对象,并且将Bean的属性打印到控制台。 第一步:创建pojo实体类studen…...
Paragon NTFS与Tuxera NTFS有何区别 Mac NTFS 磁盘读写工具选哪个好
macOS系统虽然以稳定、安全系数高等优点著称,但因其封闭性,不能对NTFS格式磁盘写入数据常被人们诟病。优质的解决方案是使用磁盘管理软件Paragon NTFS for Mac(点击获取激活码)和Tuxera NTFS(点击获取激活码࿰…...
EtherCAT主站IGH-- 2 -- IGH之coe_emerg_ring.h/c文件解析
EtherCAT主站IGH-- 2 -- IGH之coe_emerg_ring.h/c文件解析 0 预览一 该文件功能coe_emerg_ring.c 文件功能函数预览 二 函数功能介绍coe_emerg_ring.c 中主要函数的作用1. ec_coe_emerg_ring_init2. ec_coe_emerg_ring_clear3. ec_coe_emerg_ring_size4. ec_coe_emerg_ring_pus…...
psensor 的手势功能
psensor 的手势功能的移植过程 有时间再来写下...
使用 nvm 管理 Node 版本及 pnpm 安装
文章目录 GithubWindows 环境Mac/Linux 使用脚本进行安装或更新Mac/Linux 环境变量nvm 常用命令npm 常用命令npm 安装 pnpmNode 历史版本 Github https://github.com/nvm-sh/nvm Windows 环境 https://nvm.uihtm.com/nvm.html Mac/Linux 使用脚本进行安装或更新 curl -o- …...
uni-appx使用form表单页面初始化报错
因为UniFormSubmitEvent的类型时 e-->detail-->value,然后没有了具体值。所以页面初始化的时候 不能直接从value取值,会报错找不到 所以form表单里的数据我们要设置成一个对象来存放 这个问题的关键在于第22行代码 取值: 不能按照点的方式取值 …...
TiDB-从0到1-数据导出导入
TiDB从0到1系列 TiDB-从0到1-体系结构TiDB-从0到1-分布式存储TiDB-从0到1-分布式事务TiDB-从0到1-MVCCTiDB-从0到1-部署篇TiDB-从0到1-配置篇TiDB-从0到1-集群扩缩容 一、数据导出 TiDB中通过Dumpling来实现数据导出,与MySQL中的mysqldump类似,其属于…...
动手学深度学习(Pytorch版)代码实践 -卷积神经网络-16自定义层
16自定义层 import torch import torch.nn.functional as F from torch import nnclass CenteredLayer(nn.Module):def __init__(self):super().__init__()#从其输入中减去均值#X.mean() 计算的是整个张量的均值#希望计算特定维度上的均值,可以传递 dim 参数。#例如…...
树莓派4设置
使用sudo命令时要求输入密码 以 sudo 为前缀的命令以超级用户身份运行。默认情况下,超级用户不需要密码。不过,您可以要求所有以 sudo 运行的命令都输入密码,从而提高 Raspberry Pi 的安全性。 要强制 sudo 要求输入密码,请为你…...
44.商城系统(二十五):k8s基本操作,ingress域名访问,kubeSphere可视化安装
上一章我们已经配置好了k8s集群,如果没有配置好先去照着上面的配。 一、k8s入门操作 1.部署一个tomcat,测试容灾恢复 #在主机器上执行 kubectl create deployment tomcat6 --image=tomcat:6.0.53-jre8#查看k8s中的所有资源 kubectl get all kubectl get all -o wide#查看po…...
MySQL高级查询
MySQL 前言 文本源自微博客 (www.microblog.store),且已获授权. 一. mysql基础知识 1. mysql常用系统命令 启动命令 net start mysql停止命令 net stop mysql登录命令 mysql -h ip -P 端口 -u 用户名 -p 本机可以省略 ip mysql -u 用户名 -p 查看数据库版本 mysql --ve…...
聊聊啥项目适合做自动化测试
作为测试从业者,你是否遇到过这样的场景,某天公司大Boss找你谈话。 老板:小李,最近工作辛苦了 小李:常感谢您的认可,这不仅是对我个人的鼓励,更是对我们整个团队努力的认可。我们的成果离不开每…...
ROS2开发机器人移动
.创建功能包和节点 这里我们设计两个节点 example_interfaces_robot_01,机器人节点,对外提供控制机器人移动服务并发布机器人的状态。 example_interfaces_control_01,控制节点,发送机器人移动请求,订阅机器人状态话题…...
【强化学习】第02期:动态规划方法
笔者近期上了国科大周晓飞老师《强化学习及其应用》课程,计划整理一个强化学习系列笔记。笔记中所引用的内容部分出自周老师的课程PPT。笔记中如有不到之处,敬请批评指正。 文章目录 2.1 动态规划:策略收敛法/策略迭代法2.2 动态规划…...
安全技术和防火墙(二)
接上一节 备份和还原 iptables-save > /opt/iptables.bak iptables-restore < /opt/iptables.bak snat和dnat snat源地址转换 内网到外网 内网ip转换成可以访问外网的ip 内网的多个主机可以只有一个有效的公网ip地址访问外部网络 dnat 目的地址转发 外部用户&#…...
【51单片机入门】数码管原理
文章目录 前言共阴极与共阳极数码管多个数码管显示原理 总结 前言 在我们的日常生活中,数码管被广泛应用于各种电子设备中,如电子表、计时器、电子钟等。数码管的主要功能是显示数字和一些特殊字符。在这篇文章中,我们将探讨数码管的工作原理…...
响应式个人网站模板下载/网络营销app有哪些
pyton实现二分查找 搜索: 二分查找: 递归代码: def binary_search(alist,item):"""二分查找"""low0nlen(alist)if n>0:#递归终止条件midn//2if itemalist[mid]:return Trueelif item<alist[mid]:retur…...
培训网站建设机构/2023年最新新闻摘抄
fork()与vfock()都是创建一个进程,那他们有什么区别呢?总结有以下三点区别: 1. fork ():子进程拷贝父进程的数据段,代码段 vfork …...
外贸网站建设费用多少/seo sem推广
PAYJS开通微信分账功能以来,有很多同学咨询相关情况。很多同学关心有没有什么办法,可以让自己的商户号快速开通企业付款功能。这里就介绍下微信分账的具体相关内容,可以完美解决问题。一、什么是微信分账? 微信分账的推出主要有三…...
surface go 网站开发/网站收录免费咨询
GIT分支 分支在GIT中相对较难,分支就是科幻电影里面的平行宇宙,如果两个平行宇宙互不干扰,那对现在的你也没啥影响。不过,在某个时间点,两个平行宇宙合并了,我们就需要处理一些问题了! git br…...
做图用哪个素材网站/黄山搜索引擎优化
源:http://blog.csdn.net/mentat/archive/2008/12/16/3528160.aspx 人生的最大悲剧,就是孜孜不倦的努力却终于失败! 美国一位学者曾经分析了数千人的经历,结果是总人数的98%都是失败者。并由此归纳了人们失败的主要原因ÿ…...
一家专门做衣服的网站/seo搜索引擎实战详解
子查询就是指在一个select语句中嵌套另一个select语句。 any,in,some,all分别是子查询关键词之一, any 可以与、>、>、结合起来使用,分别表示等于、大于、大于等于、小于、小于等于、不等于其中的任何一个数据。…...