当前位置: 首页 > news >正文

动静分离网络

动静分离网络的主要目的是分别处理视频帧中的静止区域和运动区域,以便对不同区域采用不同的去噪策略。这里提供一个实现思路,通过两个分支网络分别处理静止区域和运动区域,然后将两者的输出融合起来。

实现步骤

  1. 帧差图生成:计算帧差图来识别运动区域和静止区域。
  2. 动静分离网络设计:构建两个分支网络,一个处理静止区域,另一个处理运动区域。
  3. 融合输出:将两个分支的输出融合,得到最终的去噪结果。

具体实现

1. 帧差图生成

首先,计算当前帧和前一帧的差异,得到帧差图:

import torchdef compute_frame_diff(current_frame, previous_frame):return torch.abs(current_frame - previous_frame)
2. 动静分离网络设计

构建两个分支网络,分别处理静止区域和运动区域:

import torch.nn as nn
import torch.nn.functional as Fclass StaticBranch(nn.Module):def __init__(self):super(StaticBranch, self).__init__()self.conv1 = nn.Conv2d(3, 64, kernel_size=3, padding=1)self.conv2 = nn.Conv2d(64, 64, kernel_size=3, padding=1)self.conv3 = nn.Conv2d(64, 3, kernel_size=3, padding=1)def forward(self, x):x = F.relu(self.conv1(x))x = F.relu(self.conv2(x))x = self.conv3(x)return xclass MotionBranch(nn.Module):def __init__(self):super(MotionBranch, self).__init__()self.conv1 = nn.Conv2d(3, 64, kernel_size=3, padding=1)self.conv2 = nn.Conv2d(64, 64, kernel_size=3, padding=1)self.conv3 = nn.Conv2d(64, 3, kernel_size=3, padding=1)def forward(self, x):x = F.relu(self.conv1(x))x = F.relu(self.conv2(x))x = self.conv3(x)return xclass MotionStaticDenoiseNet(nn.Module):def __init__(self):super(MotionStaticDenoiseNet, self).__init__()self.static_branch = StaticBranch()self.motion_branch = MotionBranch()def forward(self, x, motion_map):static_output = self.static_branch(x)motion_output = self.motion_branch(x)# 根据motion_map进行融合output = motion_output * motion_map + static_output * (1 - motion_map)return output

综合应用

利用动静分离网络进行去噪:

def denoise_image(current_frame, previous_frame, model):motion_map = compute_frame_diff(current_frame, previous_frame)motion_map = (motion_map > 0.1).float()  # 设定一个阈值,得到二值化的动静权重图denoised_image = model(current_frame, motion_map)return denoised_image

执行示例

假设 current_frame 是当前帧,previous_frame 是前一帧,model 是动静分离网络:

model = MotionStaticDenoiseNet()
current_frame = torch.randn(1, 3, 256, 256)  # 示例当前帧
previous_frame = torch.randn(1, 3, 256, 256)  # 示例前一帧denoised_image = denoise_image(current_frame, previous_frame, model)

通过这种方法,动静分离网络可以分别对静止区域和运动区域进行处理,从而更有效地进行去噪。可以根据具体需求进一步优化静止分支和运动分支的网络结构。

相关文章:

动静分离网络

动静分离网络的主要目的是分别处理视频帧中的静止区域和运动区域,以便对不同区域采用不同的去噪策略。这里提供一个实现思路,通过两个分支网络分别处理静止区域和运动区域,然后将两者的输出融合起来。 实现步骤 帧差图生成:计算…...

Python商务数据分析知识专栏(三)——Python数据分析的应用①Matplotlib数据可视化基础

Python商务数据分析知识专栏(三)——Python数据分析的应用①Matplotlib数据可视化基础 Matplotlib数据可视化基础1.掌握绘图基本语法与常用绘图2.分析特征间关系3.分析特征内部数据分布与分散情况 Matplotlib数据可视化基础 1.掌握绘图基本语法与常用绘…...

DataV大屏组件库

DataV官方文档 DataV组件库基于Vue (React版 (opens new window)) ,主要用于构建大屏(全屏)数据展示页面即数据可视化,具有多种类型组件可供使用: 源码下载...

paraview跨节点并行渲染

参考: https://cloud.tencent.com/developer/ask/sof/101483588 ParaView 支持使用其内置的网络拓扑来进行跨节点的并行渲染。以下是一个简单的步骤来设置和运行跨节点的并行渲染: 确保你的计算环境支持多节点计算,比如通过SSH、MPI或其他集…...

Java中相等比较详解

本文对Java中的相等判断进行详细解释,包括,equals和compareTo等。 一、 运算符 1. 用途 基本数据类型:用于比较两个基本数据类型的值是否相等。 引用类型:用于比较两个对象引用是否指向同一个对象。 2. 示例 // 基本数据类型比…...

HBuilder X 小白日记01

1.创建项目 2.右击项目&#xff0c;可创建html文件 3.保存CtrlS&#xff0c;运行一下 我们写的内容&#xff0c;一般是写在body里面 注释的快捷键&#xff1a;Ctrl/ h标签 <h1> 定义重要等级最高的(最大)的标题。<h6> 定义最小的标题。 H标签起侧重、强调的作用…...

使用Protocol Buffers优化数据传输

使用Protocol Buffers优化数据传输 大家好&#xff0c;我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编&#xff0c;也是冬天不穿秋裤&#xff0c;天冷也要风度的程序猿&#xff01; 什么是Protocol Buffers&#xff1f; Protocol Buffers&#xff08;简称P…...

如何把mkv转成mp4?介绍一下将mkv转成MP4的几种方法

如何把mkv转成mp4&#xff1f;如果你有一个MKV格式的视频文件&#xff0c;但是需要将其转换为MP4格式以便更广泛地在各种设备和平台上播放和共享&#xff0c;你可以通过进行简单的文件格式转换来实现。转换MKV到MP4格式可以提供更好的兼容性&#xff0c;并确保你的视频文件能够…...

PHP语言学习02

好久不见&#xff0c;学如逆水行舟&#xff0c;不进则退&#xff0c;真是这样。。。突然感觉自己有点废。。。 <?php phpinfo(); ?> 新生第一个代码。 要想看到运行结果&#xff0c;打开浏览器&#xff08;127.0.0.1/start/demo01.php&#xff09; 其中&#xff0c…...

PX2资料及问题记录

PX2的一些资料 官方论坛&#xff1a;https://devtalk.nvidia.com/default/board/182/drive-px2/ 官方网站&#xff1a;https://www.nvidia.com/en-us/self-driving-cars/ap2x/ 开发网站&#xff1a;https://developer.nvidia.com/drive/downloads docker docker run --devic…...

Jenkins容器的部署

本文主要是记录如何在Centos7上安装docker,以及在docker里面配置tomcat、mysql、jenkins等环境。 一、安装docker 1.1 准备工作 centos7、VMware17Pro 1.2 通过yum在线安装dokcer yum -y install docker1.3 启动docker服务 systemctl start docker.service1.4 查看docke…...

QT 自绘树形控件

资源来自:https://gitee.com/qt-open-source-collection/NavListView/blob/master/navlistview.h 1、解决的问题:一处编译报错;空白区域绘制背景;点击页面崩溃 2、源码: #ifndef NAVLISTVIEW_H #define NAVLISTVIEW_H/*** 作者:feiyangqingyun(QQ:517216493) 2016-10-1…...

axios之CancelToken取消请求

从 v0.22.0 开始&#xff0c;Axios 支持以 fetch API 方式—— AbortController 取消请求 此 API 从 v0.22.0 开始已被弃用&#xff0c;不应在新项目中使用 官网链接 1. 背景 最近项目中遇到一个场景&#xff0c;当连续触发一个请求时&#xff0c;如果是同一个接口&#xf…...

Unity | API鉴权用到的函数汇总

目录 一、HMAC-SHA1 二、UriEncode 三、Date 四、Content-MD5 五、参数操作 六、阿里云API鉴权 一、HMAC-SHA1 使用 RFC 2104 中定义的 HMAC-SHA1 方法生成带有密钥的哈希值&#xff1a; private static string CalculateSignature(string secret, string data){byte[] k…...

【python】socket通信代码解析

目录 一、socket通信原理 1.1 服务器端 1.2 客户端 二、socket通信主要应用场景 2.1 简单的服务器和客户端通信 2.2 并发服务器 2.3 UDP通信 2.4 文件传输 2.5 HTTP服务器 2.6 邮件发送与接收 2.7 FTP客户端 2.8 P2P文件共享 2.9 网络游戏 三、python中Socket编…...

FastGPT 手动部署错误:MongooseServerSelectionError: getaddrinfo EAI_AGAIN mongo

在运行 FastGPT 时&#xff0c;mongodb 报如下错误&#xff1a; MongooseServerSelectionError: getaddrinfo EAI_AGAIN mongo 这是因为 mongo 没有解析出来&#xff0c;在 hosts 文件中添加如下信息&#xff1a; 127.0.0.1 mongo 重新运行 FastGPT 即可。 参考链接&#xff…...

用英文介绍芝加哥(1):Making Modern Chicago Part 1 Building a Boomtown

Making Modern Chicago | Part 1: Building a Boomtown Link: https://www.youtube.com/watch?vpNdX0Dm-J8Y&listPLmSQiOQJmbZ7TU39cyx7gizM9i8nOuZXy&index4 Summary Summary of Chicago’s History and Development Urban Planning and Growth Chicago, often r…...

【启明智显分享】低成本RISC-V工业级HMI方案推荐

伴随着工业4.0的迅猛发展&#xff0c;工业HMI以方便、快捷的特点逐渐成为工业的日常应用&#xff0c;成为备受追捧的全新多媒体交互设备。 什么是工业HMI&#xff1f;工业HMI是用于工业自动化系统中的人机交互界面&#xff0c;通常由触摸屏、按钮、指示灯、显示器等组成&#…...

深入探索STM32的SPI功能:W25Q64 Flash存储器全攻略

摘要 随着嵌入式系统对存储需求的增长&#xff0c;选择合适的存储设备变得尤为重要。W25Q64 Flash存储器以其8Mbit的存储容量和SPI接口的便捷性&#xff0c;成为STM32微控制器项目中的优选存储方案。本文将深入探索STM32的SPI功能&#xff0c;提供W25Q64 Flash存储器的全面集成…...

【SQL Server数据库】带函数查询和综合查询(1)

目录 1&#xff0e;统计年龄大于30岁的学生的人数。 2&#xff0e;统计数据结构有多少人80分或以上。 3.查询“0203”课程的最高分的学生的学号。 4&#xff0e;统计各系开设班级的数目(系名称、班级数目)&#xff0c;并创建结果表。 5&#xff0e;选修了以“01”开头的课…...

使用WebService接口进行数据通信

使用WebService接口进行数据通信 大家好&#xff0c;我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编&#xff0c;也是冬天不穿秋裤&#xff0c;天冷也要风度的程序猿&#xff01;今天我们将探讨如何使用WebService接口进行数据通信。WebService是一种基于Web…...

AI进阶指南第五课,大模型相关概念(知识库,微调)

虽然前面大概讲了一下大模型的一些基本概念&#xff0c;但是那些都比较偏向于大模型本身&#xff0c;但是我们使用的时候如果只靠大模型肯定是不行的。 就好比如果一个人只有一个脑子&#xff0c;其他什么部位也没有的话&#xff0c;那场面。&#xff08;感觉现在网上的AI图片…...

【深度学习基础】`view` 和 `reshape` 的参数详解

目录 基本概念参数详解 示例view 和 reshape 在具体应用中的参数解释参数解释 更多示例高维张量示例非连续内存示例 总结 基本概念 view 和 reshape 都用于调整张量的形状&#xff0c;它们的参数是新的形状&#xff0c;每个维度的大小可以指定为具体的数值或者 -1。-1 表示这个…...

【笔记】Spring Cloud Gateway 实现 gRPC 代理

Spring Cloud Gateway 在 3.1.x 版本中增加了针对 gRPC 的网关代理功能支持,本片文章描述一下如何实现相关支持.本文主要基于 Spring Cloud Gateway 的 官方文档 进行一个实践练习。有兴趣的可以翻看官方文档。 由于 Grpc 是基于 HTTP2 协议进行传输的&#xff0c;因此 Srping …...

云顶之弈数据网站

摘要&#xff1a;随着云顶之弈游戏的广泛流行&#xff0c;玩家对于游戏数据的查询和最新资讯的获取需求呈现出显著增长的趋势。设计一款云顶之弈数据网站&#xff0c;为玩家提供便捷、高效的数据查询和资讯浏览服务&#xff0c;能满足玩家对于游戏数据的快速查询和实时资讯获取…...

Linux(Ubuntu)下源码开发整个流程完成版本(下载->编译->模拟器运行)

写这篇文章没别的意思, 年纪大了记性不好, 这次工作中下载,编译遇到了一些之前没遇到的问题,所以就所幸记录一下, 以便日后能快速查阅 好了, 正题开始 首先我们下载AOSP源代码开始 AOSP源代码下载 首先找到官网https://source.android.google.cn/ 进入后最上面点击获取源代…...

el-form表单实现校验

前端表单实现&#xff0c; rules 属性传入约定的验证规则&#xff0c;并将 form-Item 的 prop 属性设置为需要验证的特殊键值即可。 <el-form ref"ruleFormRef" :model"interviewForm" label-position"left" require-asterisk-position"…...

一台TrinityCore服务器客户端连接网速慢(未解决)

在FreeBSD开bhyve安装Ubuntu&#xff0c;然后安装了TrinityCore服务器&#xff0c;在只是经过一层NAT&#xff0c;两边都是局域网的情况下&#xff0c;连接速度竟然很慢&#xff0c;慢到600ms。 服务器安装见&#xff1a;尝试在FreeBSD 的jail、bhyve里安装TrinityCore-CSDN博…...

[系统运维|Xshell]宿主机无法连接上NAT网络下的虚拟机进行维护?主机ping不通NAT网络下的虚拟机,虚拟机ping的通主机!解决办法

遇到的问题&#xff1a;主机ping不通NAT网络下的虚拟机&#xff0c;虚拟机ping的通主机 服务器&#xff1a;Linux&#xff08;虚拟机&#xff09; 主机PC&#xff1a;Windows 虚拟机&#xff1a;vb&#xff0c;vm测试过没问题&#xff0c;vnc没测试不清楚 虚拟机网络&#xff1…...

C 语言实例 - 查找数组中最大的元素值

查找数组中最大的元素值。 实例 1 #include <stdio.h>int main() {int array[10] {1, 2, 3, 4, 5, 6, 7, 8, 9, 0};int loop, largest;largest array[0];for(loop 1; loop < 10; loop) {if( largest < array[loop] ) largest array[loop];}printf("最大…...

网站app制作教程/品牌广告文案

Java中的计算主要有double,float,int,long,BigDecimal1、float和double主要用户科学计算和工程计算&#xff0c;它们执行二进制浮点运算&#xff0c;这是为了在广泛的数值范围上提供较为精确的快速近似计算而设计的。然而它们并没有提供完全精确的结果&#xff0c;所以不应该被…...

毕业设计做的网站抄袭/谷歌浏览器官网

文章目录简介使用相机前的准备工作在flutter中使用camera总结简介 在app中使用相机肯定是再平常不过的一项事情了&#xff0c;相机肯定涉及到了底层原生代码的调用&#xff0c;那么在flutter中如何快速简单的使用上相机的功能呢&#xff1f; 一起来看看吧。 使用相机前的准备…...

c 网站开发/免费技能培训在哪里报名

/*** * A:案例演示* 集合嵌套之ArrayList嵌套ArrayList* 案例:* 我们学科,学科又分为若个班级* 整个学科一个大集合* 若干个班级分为每一个小集合*/Testpublic void twoArrary() {ArrayList<ArrayList<Person>> list new ArrayList<>();ArrayList<Person…...

烟台做网站系统/关键词三年级

在使用vxe-table 下拉选时遇到一个问题选中后值不显示(针对这个问题做一下记录)图:选择前选择后值不显示代码如下<解决方法:给下拉选加change事件 在事件触发时使单元格清除激活状态,然后立刻将该单元格设置为激活状态.<js代码selectChange效果:选择前选择后值显示了...

网站推广费用ihanshi/什么软件可以排名次

当你需要将DWG或者DXF格式的CAD图纸转为BMP图片格式的时候&#xff0c;你会怎么做呢&#xff1f;在网上找格式转换的软件&#xff1f;先截图再修改格式&#xff1f;......其实&#xff0c;并不需要那么麻烦&#xff0c;因为轻量级CAD绘图软件——浩辰CAD看图王电脑版中直接就有…...

哪家网站建设公司靠谱/手机百度正式版

今天在看王爽的《汇编语言》&#xff0c;看到地址总线的时候&#xff0c;由于那个图画的是并行传输&#xff0c;于是我就去搜了下地址总线是不是并行总线&#xff0c;结果看到一篇文章说现在串行总线的传输速度比并行总线要快&#xff0c;我就奇怪了。 在我的印象中&#xff0c…...