当前位置: 首页 > news >正文

动静分离网络

动静分离网络的主要目的是分别处理视频帧中的静止区域和运动区域,以便对不同区域采用不同的去噪策略。这里提供一个实现思路,通过两个分支网络分别处理静止区域和运动区域,然后将两者的输出融合起来。

实现步骤

  1. 帧差图生成:计算帧差图来识别运动区域和静止区域。
  2. 动静分离网络设计:构建两个分支网络,一个处理静止区域,另一个处理运动区域。
  3. 融合输出:将两个分支的输出融合,得到最终的去噪结果。

具体实现

1. 帧差图生成

首先,计算当前帧和前一帧的差异,得到帧差图:

import torchdef compute_frame_diff(current_frame, previous_frame):return torch.abs(current_frame - previous_frame)
2. 动静分离网络设计

构建两个分支网络,分别处理静止区域和运动区域:

import torch.nn as nn
import torch.nn.functional as Fclass StaticBranch(nn.Module):def __init__(self):super(StaticBranch, self).__init__()self.conv1 = nn.Conv2d(3, 64, kernel_size=3, padding=1)self.conv2 = nn.Conv2d(64, 64, kernel_size=3, padding=1)self.conv3 = nn.Conv2d(64, 3, kernel_size=3, padding=1)def forward(self, x):x = F.relu(self.conv1(x))x = F.relu(self.conv2(x))x = self.conv3(x)return xclass MotionBranch(nn.Module):def __init__(self):super(MotionBranch, self).__init__()self.conv1 = nn.Conv2d(3, 64, kernel_size=3, padding=1)self.conv2 = nn.Conv2d(64, 64, kernel_size=3, padding=1)self.conv3 = nn.Conv2d(64, 3, kernel_size=3, padding=1)def forward(self, x):x = F.relu(self.conv1(x))x = F.relu(self.conv2(x))x = self.conv3(x)return xclass MotionStaticDenoiseNet(nn.Module):def __init__(self):super(MotionStaticDenoiseNet, self).__init__()self.static_branch = StaticBranch()self.motion_branch = MotionBranch()def forward(self, x, motion_map):static_output = self.static_branch(x)motion_output = self.motion_branch(x)# 根据motion_map进行融合output = motion_output * motion_map + static_output * (1 - motion_map)return output

综合应用

利用动静分离网络进行去噪:

def denoise_image(current_frame, previous_frame, model):motion_map = compute_frame_diff(current_frame, previous_frame)motion_map = (motion_map > 0.1).float()  # 设定一个阈值,得到二值化的动静权重图denoised_image = model(current_frame, motion_map)return denoised_image

执行示例

假设 current_frame 是当前帧,previous_frame 是前一帧,model 是动静分离网络:

model = MotionStaticDenoiseNet()
current_frame = torch.randn(1, 3, 256, 256)  # 示例当前帧
previous_frame = torch.randn(1, 3, 256, 256)  # 示例前一帧denoised_image = denoise_image(current_frame, previous_frame, model)

通过这种方法,动静分离网络可以分别对静止区域和运动区域进行处理,从而更有效地进行去噪。可以根据具体需求进一步优化静止分支和运动分支的网络结构。

相关文章:

动静分离网络

动静分离网络的主要目的是分别处理视频帧中的静止区域和运动区域,以便对不同区域采用不同的去噪策略。这里提供一个实现思路,通过两个分支网络分别处理静止区域和运动区域,然后将两者的输出融合起来。 实现步骤 帧差图生成:计算…...

Python商务数据分析知识专栏(三)——Python数据分析的应用①Matplotlib数据可视化基础

Python商务数据分析知识专栏(三)——Python数据分析的应用①Matplotlib数据可视化基础 Matplotlib数据可视化基础1.掌握绘图基本语法与常用绘图2.分析特征间关系3.分析特征内部数据分布与分散情况 Matplotlib数据可视化基础 1.掌握绘图基本语法与常用绘…...

DataV大屏组件库

DataV官方文档 DataV组件库基于Vue (React版 (opens new window)) ,主要用于构建大屏(全屏)数据展示页面即数据可视化,具有多种类型组件可供使用: 源码下载...

paraview跨节点并行渲染

参考: https://cloud.tencent.com/developer/ask/sof/101483588 ParaView 支持使用其内置的网络拓扑来进行跨节点的并行渲染。以下是一个简单的步骤来设置和运行跨节点的并行渲染: 确保你的计算环境支持多节点计算,比如通过SSH、MPI或其他集…...

Java中相等比较详解

本文对Java中的相等判断进行详细解释,包括,equals和compareTo等。 一、 运算符 1. 用途 基本数据类型:用于比较两个基本数据类型的值是否相等。 引用类型:用于比较两个对象引用是否指向同一个对象。 2. 示例 // 基本数据类型比…...

HBuilder X 小白日记01

1.创建项目 2.右击项目&#xff0c;可创建html文件 3.保存CtrlS&#xff0c;运行一下 我们写的内容&#xff0c;一般是写在body里面 注释的快捷键&#xff1a;Ctrl/ h标签 <h1> 定义重要等级最高的(最大)的标题。<h6> 定义最小的标题。 H标签起侧重、强调的作用…...

使用Protocol Buffers优化数据传输

使用Protocol Buffers优化数据传输 大家好&#xff0c;我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编&#xff0c;也是冬天不穿秋裤&#xff0c;天冷也要风度的程序猿&#xff01; 什么是Protocol Buffers&#xff1f; Protocol Buffers&#xff08;简称P…...

如何把mkv转成mp4?介绍一下将mkv转成MP4的几种方法

如何把mkv转成mp4&#xff1f;如果你有一个MKV格式的视频文件&#xff0c;但是需要将其转换为MP4格式以便更广泛地在各种设备和平台上播放和共享&#xff0c;你可以通过进行简单的文件格式转换来实现。转换MKV到MP4格式可以提供更好的兼容性&#xff0c;并确保你的视频文件能够…...

PHP语言学习02

好久不见&#xff0c;学如逆水行舟&#xff0c;不进则退&#xff0c;真是这样。。。突然感觉自己有点废。。。 <?php phpinfo(); ?> 新生第一个代码。 要想看到运行结果&#xff0c;打开浏览器&#xff08;127.0.0.1/start/demo01.php&#xff09; 其中&#xff0c…...

PX2资料及问题记录

PX2的一些资料 官方论坛&#xff1a;https://devtalk.nvidia.com/default/board/182/drive-px2/ 官方网站&#xff1a;https://www.nvidia.com/en-us/self-driving-cars/ap2x/ 开发网站&#xff1a;https://developer.nvidia.com/drive/downloads docker docker run --devic…...

Jenkins容器的部署

本文主要是记录如何在Centos7上安装docker,以及在docker里面配置tomcat、mysql、jenkins等环境。 一、安装docker 1.1 准备工作 centos7、VMware17Pro 1.2 通过yum在线安装dokcer yum -y install docker1.3 启动docker服务 systemctl start docker.service1.4 查看docke…...

QT 自绘树形控件

资源来自:https://gitee.com/qt-open-source-collection/NavListView/blob/master/navlistview.h 1、解决的问题:一处编译报错;空白区域绘制背景;点击页面崩溃 2、源码: #ifndef NAVLISTVIEW_H #define NAVLISTVIEW_H/*** 作者:feiyangqingyun(QQ:517216493) 2016-10-1…...

axios之CancelToken取消请求

从 v0.22.0 开始&#xff0c;Axios 支持以 fetch API 方式—— AbortController 取消请求 此 API 从 v0.22.0 开始已被弃用&#xff0c;不应在新项目中使用 官网链接 1. 背景 最近项目中遇到一个场景&#xff0c;当连续触发一个请求时&#xff0c;如果是同一个接口&#xf…...

Unity | API鉴权用到的函数汇总

目录 一、HMAC-SHA1 二、UriEncode 三、Date 四、Content-MD5 五、参数操作 六、阿里云API鉴权 一、HMAC-SHA1 使用 RFC 2104 中定义的 HMAC-SHA1 方法生成带有密钥的哈希值&#xff1a; private static string CalculateSignature(string secret, string data){byte[] k…...

【python】socket通信代码解析

目录 一、socket通信原理 1.1 服务器端 1.2 客户端 二、socket通信主要应用场景 2.1 简单的服务器和客户端通信 2.2 并发服务器 2.3 UDP通信 2.4 文件传输 2.5 HTTP服务器 2.6 邮件发送与接收 2.7 FTP客户端 2.8 P2P文件共享 2.9 网络游戏 三、python中Socket编…...

FastGPT 手动部署错误:MongooseServerSelectionError: getaddrinfo EAI_AGAIN mongo

在运行 FastGPT 时&#xff0c;mongodb 报如下错误&#xff1a; MongooseServerSelectionError: getaddrinfo EAI_AGAIN mongo 这是因为 mongo 没有解析出来&#xff0c;在 hosts 文件中添加如下信息&#xff1a; 127.0.0.1 mongo 重新运行 FastGPT 即可。 参考链接&#xff…...

用英文介绍芝加哥(1):Making Modern Chicago Part 1 Building a Boomtown

Making Modern Chicago | Part 1: Building a Boomtown Link: https://www.youtube.com/watch?vpNdX0Dm-J8Y&listPLmSQiOQJmbZ7TU39cyx7gizM9i8nOuZXy&index4 Summary Summary of Chicago’s History and Development Urban Planning and Growth Chicago, often r…...

【启明智显分享】低成本RISC-V工业级HMI方案推荐

伴随着工业4.0的迅猛发展&#xff0c;工业HMI以方便、快捷的特点逐渐成为工业的日常应用&#xff0c;成为备受追捧的全新多媒体交互设备。 什么是工业HMI&#xff1f;工业HMI是用于工业自动化系统中的人机交互界面&#xff0c;通常由触摸屏、按钮、指示灯、显示器等组成&#…...

深入探索STM32的SPI功能:W25Q64 Flash存储器全攻略

摘要 随着嵌入式系统对存储需求的增长&#xff0c;选择合适的存储设备变得尤为重要。W25Q64 Flash存储器以其8Mbit的存储容量和SPI接口的便捷性&#xff0c;成为STM32微控制器项目中的优选存储方案。本文将深入探索STM32的SPI功能&#xff0c;提供W25Q64 Flash存储器的全面集成…...

【SQL Server数据库】带函数查询和综合查询(1)

目录 1&#xff0e;统计年龄大于30岁的学生的人数。 2&#xff0e;统计数据结构有多少人80分或以上。 3.查询“0203”课程的最高分的学生的学号。 4&#xff0e;统计各系开设班级的数目(系名称、班级数目)&#xff0c;并创建结果表。 5&#xff0e;选修了以“01”开头的课…...

渲染学进阶内容——模型

最近在写模组的时候发现渲染器里面离不开模型的定义,在渲染的第二篇文章中简单的讲解了一下关于模型部分的内容,其实不管是方块还是方块实体,都离不开模型的内容 🧱 一、CubeListBuilder 功能解析 CubeListBuilder 是 Minecraft Java 版模型系统的核心构建器,用于动态创…...

基于数字孪生的水厂可视化平台建设:架构与实践

分享大纲&#xff1a; 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年&#xff0c;数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段&#xff0c;基于数字孪生的水厂可视化平台的…...

从零实现STL哈希容器:unordered_map/unordered_set封装详解

本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说&#xff0c;直接开始吧&#xff01; 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...

【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)

要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况&#xff0c;可以通过以下几种方式模拟或触发&#xff1a; 1. 增加CPU负载 运行大量计算密集型任务&#xff0c;例如&#xff1a; 使用多线程循环执行复杂计算&#xff08;如数学运算、加密解密等&#xff09;。运行图…...

MySQL账号权限管理指南:安全创建账户与精细授权技巧

在MySQL数据库管理中&#xff0c;合理创建用户账号并分配精确权限是保障数据安全的核心环节。直接使用root账号进行所有操作不仅危险且难以审计操作行为。今天我们来全面解析MySQL账号创建与权限分配的专业方法。 一、为何需要创建独立账号&#xff1f; 最小权限原则&#xf…...

深度学习习题2

1.如果增加神经网络的宽度&#xff0c;精确度会增加到一个特定阈值后&#xff0c;便开始降低。造成这一现象的可能原因是什么&#xff1f; A、即使增加卷积核的数量&#xff0c;只有少部分的核会被用作预测 B、当卷积核数量增加时&#xff0c;神经网络的预测能力会降低 C、当卷…...

HDFS分布式存储 zookeeper

hadoop介绍 狭义上hadoop是指apache的一款开源软件 用java语言实现开源框架&#xff0c;允许使用简单的变成模型跨计算机对大型集群进行分布式处理&#xff08;1.海量的数据存储 2.海量数据的计算&#xff09;Hadoop核心组件 hdfs&#xff08;分布式文件存储系统&#xff09;&a…...

Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习)

Aspose.PDF 限制绕过方案&#xff1a;Java 字节码技术实战分享&#xff08;仅供学习&#xff09; 一、Aspose.PDF 简介二、说明&#xff08;⚠️仅供学习与研究使用&#xff09;三、技术流程总览四、准备工作1. 下载 Jar 包2. Maven 项目依赖配置 五、字节码修改实现代码&#…...

Razor编程中@Html的方法使用大全

文章目录 1. 基础HTML辅助方法1.1 Html.ActionLink()1.2 Html.RouteLink()1.3 Html.Display() / Html.DisplayFor()1.4 Html.Editor() / Html.EditorFor()1.5 Html.Label() / Html.LabelFor()1.6 Html.TextBox() / Html.TextBoxFor() 2. 表单相关辅助方法2.1 Html.BeginForm() …...

多模态图像修复系统:基于深度学习的图片修复实现

多模态图像修复系统:基于深度学习的图片修复实现 1. 系统概述 本系统使用多模态大模型(Stable Diffusion Inpainting)实现图像修复功能,结合文本描述和图片输入,对指定区域进行内容修复。系统包含完整的数据处理、模型训练、推理部署流程。 import torch import numpy …...