动静分离网络
动静分离网络的主要目的是分别处理视频帧中的静止区域和运动区域,以便对不同区域采用不同的去噪策略。这里提供一个实现思路,通过两个分支网络分别处理静止区域和运动区域,然后将两者的输出融合起来。
实现步骤
- 帧差图生成:计算帧差图来识别运动区域和静止区域。
- 动静分离网络设计:构建两个分支网络,一个处理静止区域,另一个处理运动区域。
- 融合输出:将两个分支的输出融合,得到最终的去噪结果。
具体实现
1. 帧差图生成
首先,计算当前帧和前一帧的差异,得到帧差图:
import torchdef compute_frame_diff(current_frame, previous_frame):return torch.abs(current_frame - previous_frame)
2. 动静分离网络设计
构建两个分支网络,分别处理静止区域和运动区域:
import torch.nn as nn
import torch.nn.functional as Fclass StaticBranch(nn.Module):def __init__(self):super(StaticBranch, self).__init__()self.conv1 = nn.Conv2d(3, 64, kernel_size=3, padding=1)self.conv2 = nn.Conv2d(64, 64, kernel_size=3, padding=1)self.conv3 = nn.Conv2d(64, 3, kernel_size=3, padding=1)def forward(self, x):x = F.relu(self.conv1(x))x = F.relu(self.conv2(x))x = self.conv3(x)return xclass MotionBranch(nn.Module):def __init__(self):super(MotionBranch, self).__init__()self.conv1 = nn.Conv2d(3, 64, kernel_size=3, padding=1)self.conv2 = nn.Conv2d(64, 64, kernel_size=3, padding=1)self.conv3 = nn.Conv2d(64, 3, kernel_size=3, padding=1)def forward(self, x):x = F.relu(self.conv1(x))x = F.relu(self.conv2(x))x = self.conv3(x)return xclass MotionStaticDenoiseNet(nn.Module):def __init__(self):super(MotionStaticDenoiseNet, self).__init__()self.static_branch = StaticBranch()self.motion_branch = MotionBranch()def forward(self, x, motion_map):static_output = self.static_branch(x)motion_output = self.motion_branch(x)# 根据motion_map进行融合output = motion_output * motion_map + static_output * (1 - motion_map)return output
综合应用
利用动静分离网络进行去噪:
def denoise_image(current_frame, previous_frame, model):motion_map = compute_frame_diff(current_frame, previous_frame)motion_map = (motion_map > 0.1).float() # 设定一个阈值,得到二值化的动静权重图denoised_image = model(current_frame, motion_map)return denoised_image
执行示例
假设 current_frame 是当前帧,previous_frame 是前一帧,model 是动静分离网络:
model = MotionStaticDenoiseNet()
current_frame = torch.randn(1, 3, 256, 256) # 示例当前帧
previous_frame = torch.randn(1, 3, 256, 256) # 示例前一帧denoised_image = denoise_image(current_frame, previous_frame, model)
通过这种方法,动静分离网络可以分别对静止区域和运动区域进行处理,从而更有效地进行去噪。可以根据具体需求进一步优化静止分支和运动分支的网络结构。
相关文章:
动静分离网络
动静分离网络的主要目的是分别处理视频帧中的静止区域和运动区域,以便对不同区域采用不同的去噪策略。这里提供一个实现思路,通过两个分支网络分别处理静止区域和运动区域,然后将两者的输出融合起来。 实现步骤 帧差图生成:计算…...
Python商务数据分析知识专栏(三)——Python数据分析的应用①Matplotlib数据可视化基础
Python商务数据分析知识专栏(三)——Python数据分析的应用①Matplotlib数据可视化基础 Matplotlib数据可视化基础1.掌握绘图基本语法与常用绘图2.分析特征间关系3.分析特征内部数据分布与分散情况 Matplotlib数据可视化基础 1.掌握绘图基本语法与常用绘…...
DataV大屏组件库
DataV官方文档 DataV组件库基于Vue (React版 (opens new window)) ,主要用于构建大屏(全屏)数据展示页面即数据可视化,具有多种类型组件可供使用: 源码下载...
paraview跨节点并行渲染
参考: https://cloud.tencent.com/developer/ask/sof/101483588 ParaView 支持使用其内置的网络拓扑来进行跨节点的并行渲染。以下是一个简单的步骤来设置和运行跨节点的并行渲染: 确保你的计算环境支持多节点计算,比如通过SSH、MPI或其他集…...
Java中相等比较详解
本文对Java中的相等判断进行详细解释,包括,equals和compareTo等。 一、 运算符 1. 用途 基本数据类型:用于比较两个基本数据类型的值是否相等。 引用类型:用于比较两个对象引用是否指向同一个对象。 2. 示例 // 基本数据类型比…...
HBuilder X 小白日记01
1.创建项目 2.右击项目,可创建html文件 3.保存CtrlS,运行一下 我们写的内容,一般是写在body里面 注释的快捷键:Ctrl/ h标签 <h1> 定义重要等级最高的(最大)的标题。<h6> 定义最小的标题。 H标签起侧重、强调的作用…...
使用Protocol Buffers优化数据传输
使用Protocol Buffers优化数据传输 大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿! 什么是Protocol Buffers? Protocol Buffers(简称P…...
如何把mkv转成mp4?介绍一下将mkv转成MP4的几种方法
如何把mkv转成mp4?如果你有一个MKV格式的视频文件,但是需要将其转换为MP4格式以便更广泛地在各种设备和平台上播放和共享,你可以通过进行简单的文件格式转换来实现。转换MKV到MP4格式可以提供更好的兼容性,并确保你的视频文件能够…...
PHP语言学习02
好久不见,学如逆水行舟,不进则退,真是这样。。。突然感觉自己有点废。。。 <?php phpinfo(); ?> 新生第一个代码。 要想看到运行结果,打开浏览器(127.0.0.1/start/demo01.php) 其中,…...
PX2资料及问题记录
PX2的一些资料 官方论坛:https://devtalk.nvidia.com/default/board/182/drive-px2/ 官方网站:https://www.nvidia.com/en-us/self-driving-cars/ap2x/ 开发网站:https://developer.nvidia.com/drive/downloads docker docker run --devic…...
Jenkins容器的部署
本文主要是记录如何在Centos7上安装docker,以及在docker里面配置tomcat、mysql、jenkins等环境。 一、安装docker 1.1 准备工作 centos7、VMware17Pro 1.2 通过yum在线安装dokcer yum -y install docker1.3 启动docker服务 systemctl start docker.service1.4 查看docke…...
QT 自绘树形控件
资源来自:https://gitee.com/qt-open-source-collection/NavListView/blob/master/navlistview.h 1、解决的问题:一处编译报错;空白区域绘制背景;点击页面崩溃 2、源码: #ifndef NAVLISTVIEW_H #define NAVLISTVIEW_H/*** 作者:feiyangqingyun(QQ:517216493) 2016-10-1…...
axios之CancelToken取消请求
从 v0.22.0 开始,Axios 支持以 fetch API 方式—— AbortController 取消请求 此 API 从 v0.22.0 开始已被弃用,不应在新项目中使用 官网链接 1. 背景 最近项目中遇到一个场景,当连续触发一个请求时,如果是同一个接口…...
Unity | API鉴权用到的函数汇总
目录 一、HMAC-SHA1 二、UriEncode 三、Date 四、Content-MD5 五、参数操作 六、阿里云API鉴权 一、HMAC-SHA1 使用 RFC 2104 中定义的 HMAC-SHA1 方法生成带有密钥的哈希值: private static string CalculateSignature(string secret, string data){byte[] k…...
【python】socket通信代码解析
目录 一、socket通信原理 1.1 服务器端 1.2 客户端 二、socket通信主要应用场景 2.1 简单的服务器和客户端通信 2.2 并发服务器 2.3 UDP通信 2.4 文件传输 2.5 HTTP服务器 2.6 邮件发送与接收 2.7 FTP客户端 2.8 P2P文件共享 2.9 网络游戏 三、python中Socket编…...
FastGPT 手动部署错误:MongooseServerSelectionError: getaddrinfo EAI_AGAIN mongo
在运行 FastGPT 时,mongodb 报如下错误: MongooseServerSelectionError: getaddrinfo EAI_AGAIN mongo 这是因为 mongo 没有解析出来,在 hosts 文件中添加如下信息: 127.0.0.1 mongo 重新运行 FastGPT 即可。 参考链接ÿ…...
用英文介绍芝加哥(1):Making Modern Chicago Part 1 Building a Boomtown
Making Modern Chicago | Part 1: Building a Boomtown Link: https://www.youtube.com/watch?vpNdX0Dm-J8Y&listPLmSQiOQJmbZ7TU39cyx7gizM9i8nOuZXy&index4 Summary Summary of Chicago’s History and Development Urban Planning and Growth Chicago, often r…...
【启明智显分享】低成本RISC-V工业级HMI方案推荐
伴随着工业4.0的迅猛发展,工业HMI以方便、快捷的特点逐渐成为工业的日常应用,成为备受追捧的全新多媒体交互设备。 什么是工业HMI?工业HMI是用于工业自动化系统中的人机交互界面,通常由触摸屏、按钮、指示灯、显示器等组成&#…...
深入探索STM32的SPI功能:W25Q64 Flash存储器全攻略
摘要 随着嵌入式系统对存储需求的增长,选择合适的存储设备变得尤为重要。W25Q64 Flash存储器以其8Mbit的存储容量和SPI接口的便捷性,成为STM32微控制器项目中的优选存储方案。本文将深入探索STM32的SPI功能,提供W25Q64 Flash存储器的全面集成…...
【SQL Server数据库】带函数查询和综合查询(1)
目录 1.统计年龄大于30岁的学生的人数。 2.统计数据结构有多少人80分或以上。 3.查询“0203”课程的最高分的学生的学号。 4.统计各系开设班级的数目(系名称、班级数目),并创建结果表。 5.选修了以“01”开头的课…...
Linux 文件类型,目录与路径,文件与目录管理
文件类型 后面的字符表示文件类型标志 普通文件:-(纯文本文件,二进制文件,数据格式文件) 如文本文件、图片、程序文件等。 目录文件:d(directory) 用来存放其他文件或子目录。 设备…...
MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例
一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...
DockerHub与私有镜像仓库在容器化中的应用与管理
哈喽,大家好,我是左手python! Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库,用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...
条件运算符
C中的三目运算符(也称条件运算符,英文:ternary operator)是一种简洁的条件选择语句,语法如下: 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true,则整个表达式的结果为“表达式1”…...
ardupilot 开发环境eclipse 中import 缺少C++
目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...
select、poll、epoll 与 Reactor 模式
在高并发网络编程领域,高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表,以及基于它们实现的 Reactor 模式,为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。 一、I…...
项目部署到Linux上时遇到的错误(Redis,MySQL,无法正确连接,地址占用问题)
Redis无法正确连接 在运行jar包时出现了这样的错误 查询得知问题核心在于Redis连接失败,具体原因是客户端发送了密码认证请求,但Redis服务器未设置密码 1.为Redis设置密码(匹配客户端配置) 步骤: 1).修…...
Angular微前端架构:Module Federation + ngx-build-plus (Webpack)
以下是一个完整的 Angular 微前端示例,其中使用的是 Module Federation 和 npx-build-plus 实现了主应用(Shell)与子应用(Remote)的集成。 🛠️ 项目结构 angular-mf/ ├── shell-app/ # 主应用&…...
用机器学习破解新能源领域的“弃风”难题
音乐发烧友深有体会,玩音乐的本质就是玩电网。火电声音偏暖,水电偏冷,风电偏空旷。至于太阳能发的电,则略显朦胧和单薄。 不知你是否有感觉,近两年家里的音响声音越来越冷,听起来越来越单薄? —…...
初探Service服务发现机制
1.Service简介 Service是将运行在一组Pod上的应用程序发布为网络服务的抽象方法。 主要功能:服务发现和负载均衡。 Service类型的包括ClusterIP类型、NodePort类型、LoadBalancer类型、ExternalName类型 2.Endpoints简介 Endpoints是一种Kubernetes资源…...
