二刷算法训练营Day45 | 动态规划(7/17)
目录
详细布置:
1. 139. 单词拆分
2. 多重背包理论基础
3. 背包总结
3.1 背包递推公式
3.2 遍历顺序
01背包
完全背包
详细布置:
1. 139. 单词拆分
给你一个字符串
s
和一个字符串列表wordDict
作为字典。如果可以利用字典中出现的一个或多个单词拼接出s
则返回true
。注意:不要求字典中出现的单词全部都使用,并且字典中的单词可以重复使用。
单词就是物品,字符串s就是背包,单词能否组成字符串s,就是问物品能不能把背包装满。
拆分时可以重复使用字典中的单词,说明就是一个完全背包!
动规五部曲分析如下:
- 确定dp数组以及下标的含义
dp[i] : 字符串长度为i的话,dp[i]为true,表示可以拆分为一个或多个在字典中出现的单词。
2. 确定递推公式
如果确定dp[j] 是true,且 [j, i] 这个区间的子串出现在字典里,那么dp[i]一定是true。(j < i )。
所以递推公式是 if([j, i] 这个区间的子串出现在字典里 && dp[j]是true) 那么 dp[i] = true。
3. dp数组如何初始化
从递推公式中可以看出,dp[i] 的状态依靠 dp[j]是否为true,那么dp[0]就是递推的根基,dp[0]一定要为true,否则递推下去后面都都是false了。
那么dp[0]有没有意义呢?
dp[0]表示如果字符串为空的话,说明出现在字典里。
但题目中说了“给定一个非空字符串 s” 所以测试数据中不会出现i为0的情况,那么dp[0]初始为true完全就是为了推导公式。
下标非0的dp[i]初始化为false,只要没有被覆盖说明都是不可拆分为一个或多个在字典中出现的单词。
4. 确定遍历顺序
题目中说是拆分为一个或多个在字典中出现的单词,所以这是完全背包。
还要讨论两层for循环的前后顺序。
如果求组合数就是外层for循环遍历物品,内层for遍历背包。
如果求排列数就是外层for遍历背包,内层for循环遍历物品。
我在这里做一个总结:
求组合数:动态规划:518.零钱兑换II (opens new window)求排列数:动态规划:377. 组合总和 Ⅳ (opens new window)、动态规划:70. 爬楼梯进阶版(完全背包) (opens new window)求最小数:动态规划:322. 零钱兑换 (opens new window)、动态规划:279.完全平方数(opens new window)
而本题其实我们求的是排列数,为什么呢。 拿 s = "applepenapple", wordDict = ["apple", "pen"] 举例。
"apple", "pen" 是物品,那么我们要求 物品的组合一定是 "apple" + "pen" + "apple" 才能组成 "applepenapple"。
"apple" + "apple" + "pen" 或者 "pen" + "apple" + "apple" 是不可以的,那么我们就是强调物品之间顺序。
所以说,本题一定是 先遍历 背包,再遍历物品。
5. 举例推导dp[i]
class Solution:def backtracking(self, s: str, wordSet: set[str], startIndex: int) -> bool:# 边界情况:已经遍历到字符串末尾,返回Trueif startIndex >= len(s):return True# 遍历所有可能的拆分位置for i in range(startIndex, len(s)):word = s[startIndex:i + 1] # 截取子串if word in wordSet and self.backtracking(s, wordSet, i + 1):# 如果截取的子串在字典中,并且后续部分也可以被拆分成单词,返回Truereturn True# 无法进行有效拆分,返回Falsereturn Falsedef wordBreak(self, s: str, wordDict: List[str]) -> bool:wordSet = set(wordDict) # 转换为哈希集合,提高查找效率return self.backtracking(s, wordSet, 0)
2. 多重背包理论基础
多重背包在面试中基本不会出现,力扣上也没有对应的题目,大家对多重背包的掌握程度知道它是一种01背包,并能在01背包的基础上写出对应代码就可以了。
例题可以见卡哥的总结:多重背包
3. 背包总结
关于这几种常见的背包,其关系如下:
通过这个图,可以很清晰分清这几种常见背包之间的关系。
在讲解背包问题的时候,我们都是按照如下五部来逐步分析,相信大家也体会到,把这五部都搞透了,算是对动规来理解深入了。
- 确定dp数组(dp table)以及下标的含义
- 确定递推公式
- dp数组如何初始化
- 确定遍历顺序
- 举例推导dp数组
其实这五部里哪一步都很关键,但确定递推公式和确定遍历顺序都具有规律性和代表性,所以下面我从这两点来对背包问题做一做总结
3.1 背包递推公式
问能否能装满背包(或者最多装多少):dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]); ,对应题目如下:
- 动态规划:416.分割等和子集(opens new window)
- 动态规划:1049.最后一块石头的重量 II(opens new window)
问装满背包有几种方法:dp[j] += dp[j - nums[i]] ,对应题目如下:
- 动态规划:494.目标和(opens new window)
- 动态规划:518. 零钱兑换 II(opens new window)
- 动态规划:377.组合总和Ⅳ(opens new window)
- 动态规划:70. 爬楼梯进阶版(完全背包)(opens new window)
问背包装满最大价值:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]); ,对应题目如下:
- 动态规划:474.一和零(opens new window)
问装满背包所有物品的最小个数:dp[j] = min(dp[j - coins[i]] + 1, dp[j]); ,对应题目如下:
- 动态规划:322.零钱兑换(opens new window)
- 动态规划:279.完全平方数
3.2 遍历顺序
01背包
在动态规划:关于01背包问题,你该了解这些! (opens new window)中我们讲解二维dp数组01背包先遍历物品还是先遍历背包都是可以的,且第二层for循环是从小到大遍历。
和动态规划:关于01背包问题,你该了解这些!(滚动数组) (opens new window)中,我们讲解一维dp数组01背包只能先遍历物品再遍历背包容量,且第二层for循环是从大到小遍历。
一维dp数组的背包在遍历顺序上和二维dp数组实现的01背包其实是有很大差异的,大家需要注意!
完全背包
说完01背包,再看看完全背包。
在动态规划:关于完全背包,你该了解这些! (opens new window)中,讲解了纯完全背包的一维dp数组实现,先遍历物品还是先遍历背包都是可以的,且第二层for循环是从小到大遍历。
但是仅仅是纯完全背包的遍历顺序是这样的,题目稍有变化,两个for循环的先后顺序就不一样了。
如果求组合数就是外层for循环遍历物品,内层for遍历背包。
如果求排列数就是外层for遍历背包,内层for循环遍历物品。
相关题目如下:
- 求组合数:动态规划:518.零钱兑换II(opens new window)
- 求排列数:动态规划:377. 组合总和 Ⅳ (opens new window)、动态规划:70. 爬楼梯进阶版(完全背包)(opens new window)
如果求最小数,那么两层for循环的先后顺序就无所谓了,相关题目如下:
- 求最小数:动态规划:322. 零钱兑换 (opens new window)、动态规划:279.完全平方数(opens new window)
对于背包问题,其实递推公式算是容易的,难是难在遍历顺序上,如果把遍历顺序搞透,才算是真正理解了。
相关文章:
二刷算法训练营Day45 | 动态规划(7/17)
目录 详细布置: 1. 139. 单词拆分 2. 多重背包理论基础 3. 背包总结 3.1 背包递推公式 3.2 遍历顺序 01背包 完全背包 详细布置: 1. 139. 单词拆分 给你一个字符串 s 和一个字符串列表 wordDict 作为字典。如果可以利用字典中出现的一个或多个单…...
大模型项目落地时,该如何估算模型所需GPU算力资源
近期公司有大模型项目落地。在前期沟通时,对于算力估算和采购方案许多小伙伴不太了解,在此对相关的算力估算和选择进行一些总结。 不喜欢过程的可以直接 跳到HF上提供的模型计算器 要估算大模型的所需的显卡算力,首先要了解大模型的参数基础知识。 大模型的规模、参数的理解…...
LLM应用开发-RAG系统评估与优化
前言 Hello,大家好,我是GISer Liu😁,一名热爱AI技术的GIS开发者,在上一篇文章中,我们学习了如何基于LangChain构建RAG应用,并且通过Streamlit将这个RAG应用部署到了阿里云服务器;&am…...
秋招突击——第七弹——Redis快速入门
文章目录 引言Redis是什么 正文对象String字符串面试重点 List面试考点 压缩列表ZipList面试题 Set面试题讲解 Hash面试重点 HASHTABLE底层面试考点 跳表面试重点 ZSET有序链表面试重点 总结 引言 在项目和redis之间,我犹豫了一下,觉得还是了解学习一下…...
软考初级网络管理员__操作系统单选题
1.在Windows资源管理器中,假设已经选定文件,以下关于“复制”操作的叙述中,正确的有()。 按住Ctr键,拖至不同驱动器的图标上 按住AIt键,拖至不同驱动器的图标上 直接拖至不同驱动器的图标上 按住Shift键࿰…...
从入门到精通:网络编程套接字(万字详解,小白友好,建议收藏)
一、预备知识 1.1 理解源IP地址和目的IP地址 在网络编程中,IP地址(Internet Protocol Address)是每个连接到互联网的设备的唯一标识符。IP地址可以分为IPv4和IPv6两种类型。IPv4地址是由32位二进制数表示,通常分为四个八位组&am…...
dledger原理源码分析系列(一)架构,核心组件和rpc组件
简介 dledger是openmessaging的一个组件, raft算法实现,用于分布式日志,本系列分析dledger如何实现raft概念,以及dledger在rocketmq的应用 本系列使用dledger v0.40 本文分析dledger的架构,核心组件;rpc组…...
第七节:如何浅显易懂地理解Spring Boot中的依赖注入(自学Spring boot 3.x的第二天)
大家好,我是网创有方,今天我开始学习spring boot的第一天,一口气写了这么多。 这节通过一个非常浅显易懂的列子来讲解依赖注入。 在Spring Boot 3.x中,依赖注入(Dependency Injection, DI)是一个核心概念…...
Postman自动化测试实战:使用脚本提升测试效率
在软件开发过程中,接口测试是确保后端服务稳定性和可靠性的关键步骤。Postman作为一个流行的API开发工具,提供了强大的脚本功能来实现自动化测试。通过在Postman中使用脚本,测试人员可以编写测试逻辑,实现测试用例的自动化执行&am…...
CSMA/CA并不是“公平”的
CSMA/CA会造成过于公平,对于最需要流量的节点,是最不友好的,而对于最不需要流量的节点,则是最友好的。 CSMA/CA是优先公平来工作的。 CSMA/CA首先各节点使用DIFS界定air idle,在此期间大家都等待 其次,为了同时发送引起碰撞,在DIFS之后随机从CWmin和CWmax之间选择一个时…...
【漏洞复现】I doc view——任意文件读取
声明:本文档或演示材料仅供教育和教学目的使用,任何个人或组织使用本文档中的信息进行非法活动,均与本文档的作者或发布者无关。 文章目录 漏洞描述漏洞复现测试工具 漏洞描述 I doc view 在线文档预览是一个用于查看、编辑、管理文档的工具…...
图数据库 vs 向量数据库
最近大模型出来之后,向量数据库重新翻红,业界和市场上有不少声音认为向量数据库会极大的影响图数据库,图数据库市场会萎缩甚至消失,今天就从技术原理角度来讨论下图数据库和向量数据库到底差别在哪里,适合什么场景&…...
企业品牌出海第一站 维基百科词条创建
维基百科是一部内容开放、自由的网络百科全书,旨在创造一个涵盖所有领域知识,服务所有互联网用户的知识性百科全书。其在国外应用非常广泛且认可度很高,国内品牌出海或国际品牌都很有必要创建企业自己的维基百科页面,以及企业高管的个人维基百科页面。 如…...
Windows下activemq集群配置(broker-network)
1.activemq版本信息 activemq:apache-activemq-5.18.4 2.activemq架构 3.activemq集群配置 activemq集群配置基于Networks of Brokers 这种HA方案的优点:是占用的节点数更少(只需要2个节点),而且2个broker都可以响应消息的接收与发送。不足ÿ…...
心理辅导平台系统
摘 要 中文本论文基于Java Web技术设计与实现了一个心理辅导平台。通过对国内外心理辅导平台发展现状的调研,本文分析了心理辅导平台的背景与意义,并提出了论文研究内容与创新点。在相关技术介绍部分,对Java Web、SpringBoot、B/S架构、MVC模…...
代理IP对SEO影响分析:提升网站排名的关键策略
你是否曾经为网站排名难以提升而苦恼?代理服务器或许就是你忽略的关键因素。在竞争激烈的互联网环境中,了解代理服务器对SEO的影响,有助于你采取更有效的策略,提高网站的搜索引擎排名。本文将为你详细分析代理服务器在SEO优化中的…...
【leetcode--三数之和】
这道题记得之前做过,但是想不起来了。。总结一下: 函数的主要步骤和关键点: 排序:对输入的整数数组nums进行排序。这是非常重要的,因为它允许我们使用双指针技巧来高效地找到满足条件的三元组。初始化:定…...
解决Java中的ClassCastException问题
解决Java中的ClassCastException问题 大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿! 在Java编程中,ClassCastException是一个常见的运行时异常&am…...
【TensorFlow深度学习】混合生成模型:结合AR与AE的创新尝试
混合生成模型:结合AR与AE的创新尝试 引言自回归模型与自动编码器的简述混合模型的创新尝试组合AR与AE:MADE混合模型在图学习中的应用 结论与展望 在自我监督学习的广阔天地里,混合生成模型以其独特的魅力,跨越了自回归(…...
Spring:Spring中分布式事务解决方案
一、前言 在Spring中,分布式事务是指涉及多个数据库或系统的事务处理,其中事务的参与者、支持事务的服务器、资源管理器以及事务管理器位于分布式系统的不同节点上。这样的架构使得两个或多个网络计算机上的数据能够被访问并更新,同时将这些操…...
音视频开发32 FFmpeg 编码- 视频编码 h264 参数相关
1. ffmpeg -h 这个命令总不会忘记,用这个先将ffmpeg所有的help信息都list出来 C:\Users\Administrator>ffmpeg -h ffmpeg version 6.0-full_build-www.gyan.dev Copyright (c) 2000-2023 the FFmpeg developersbuilt with gcc 12.2.0 (Rev10, Built by MSYS2 pro…...
标准版小程序订单中心path审核不通过处理教程
首先看自己小程序是不是已经审核通过并上线状态才在站内信里面提醒的? 如果没有提交过审核,请在提交的时候填写。path地址为:pages/goods/order_list/index 如果是已经上线的小程序,当时没要求填这个,但新的政策要求填…...
移植对话框MFC
VC版 MFC程序对话框资源移植 以下均拷贝自上面,仅用来记录 (部分有删除) 法1: Eg:将B工程调试好的对话框移植到A工程中 1.资源移植 1.1 在2017打开B工程,在工作区Resource标签页中选中Dialog文件夹下的资源文件,按…...
【开源的字典项目】【macOS】:在macOS上能打开mdd and mdx 的github开源项目
【开源的字典项目】【macOS】 在macOS上能打开mdd and mdx 的github开源项目 Here are some GitHub repositories that provide code for opening and reading mdd and mdx files in macOS: 1. MdxEdit: Repository: https://github.com/mdx-editorDescription: A free and …...
已解决javax.security.auth.login.LoginException:登录失败的正确解决方法,亲测有效!!!
已解决javax.security.auth.login.LoginException:登录失败的正确解决方法,亲测有效!!! 目录 问题分析 出现问题的场景 报错原因 解决思路 解决方法 1. 检查用户名和密码 用户名和密码验证 2. 验证配置文件 …...
2741. 特别的排列 Medium
给你一个下标从 0 开始的整数数组 nums ,它包含 n 个 互不相同 的正整数。如果 nums 的一个排列满足以下条件,我们称它是一个特别的排列: 对于 0 < i < n - 1 的下标 i ,要么 nums[i] % nums[i1] 0 ,要么 nums[…...
读AI新生:破解人机共存密码笔记15辅助博弈
1. 辅助博弈 1.1. assistance game 1.2. 逆强化学习如今已经是构建有效的人工智能系统的重要工具,但它做了一些简化的假设 1.2.1. 机器人一旦通过观察人类学会了奖励函数,它就会采用奖励函数,这样它就可以执行相同的任务 1.2.1.1. 解决这…...
C++ 因项目需求,需要将0~2的32次方这个区间的数字保存到内存当中(内存大小为4G),并且可以实现对任意一个数字的增删。(先叙述设计思路,再写岀代码)
问题: C 因项目需求,需要将0~2的32次方这个区间的数字保存到内存当中(内存大小为4G),并且可以实现对任意一个数字的增删。(先叙述设计思路,再写岀代码) 解答 设计思路代码实现说明 为了在有限的内存(4GB)中存储和操作 …...
Linux 下的性能监控与分析技巧
在日常的服务器管理和问题诊断过程中,Linux 命令行工具提供了强大的支持。本文通过几个常用的示例,介绍如何快速定位问题、监控服务器性能。 无论你是编程新手还是有一定经验的开发者,理解和掌握这些命令,都将在你的工作中大放异…...
不可复制网站上的文字——2种方法
禁用javascript或Console控制台代码 (1)F12键——设置——勾选禁用javascript (2)Console控制台敲如下代码: var allowPaste function(e){ e.stopImmediatePropagation(); return true; }; document.addEventListe…...
安陆网站建设推广/百度网盘资源搜索
本章首要介绍一下搜索引擎蜘蛛都有哪些类型。了解类型之前要先知道什么是搜索引擎蜘蛛。百度百科上有相关解说,我们用一个形象的表述重新说一下。以百度为例,大家要为什么能在百度上搜到各类网站网页的内容,是由于百度派出去的小弟—百度蜘蛛…...
网站被劫持怎么修复/免费网站怎么申请
1、经验误差与过拟合通常我们把分类错误的样本数占样本总数的比例称为“错误率”(error rate),即如果在m个样本中有a个样本分类错误,则错误率Ea/m;相应的,1-a/m称为“精度”(accuracy),即“精度1一错误率”。更一般地&…...
网站建设术语/外链平台有哪些
组件写好之后有的时候需要动态创建组件。例如: 编辑文章页面,正文是一个富文本编辑器,富文本编辑器是一个第三方的组件,点击添加章节的时候需要动态的创建一个富文本编辑器这个时候怎么处理呢。 富文本编辑器也就是第三方的组件&a…...
南京网站制作报价/网络广告推广方式
深度学习编译器综合研究报告 本文主要参考了: The Deep Learning Compiler: A Comprehensive Survey 本文主要回答以下几个问题: 为什么需要dl compiler当下流行的dl framwwork有哪些深度学习硬件有三类 都有哪些dl compiler的关键组件和技术流行的dl c…...
企业门户网站开发平台的设计/子域名网址查询
事件通知 当一个系统发送了事件消息通知其它系统在自身域中做改变时,会发生事件通知。事件通知的一个关键因素是源系统并不真正十分关心响应。通常源系统根本就不希望得到应答,或者如果有一个源系统关心的响应,这也是间接的。发送事件的逻辑…...
阿里网站年费续费怎么做分录/百度广告一级代理
txt中数据格式如下:期号 红球 蓝球 开奖时间 开奖公告2012041 08 11 15 20 24 32 02 2012-04-10 开奖公告2012040 03 08 09 22 25 31 10 2012-04-08 开奖公告2012039 01 02 05 13 22 29 08 2012-04-05 开奖公告2012038 09 10 11 15 19 33 16 2012-04-03 开奖公告201…...