当前位置: 首页 > news >正文

动手学深度学习(Pytorch版)代码实践 -计算机视觉-48全连接卷积神经网络(FCN)

48全连接卷积神经网络(FCN

在这里插入图片描述

1.构造函数
import torch
import torchvision
from torch import nn
from torch.nn import functional as F
import matplotlib.pyplot as plt
import liliPytorch as lp
from d2l import torch as d2l# 构造模型
pretrained_net = torchvision.models.resnet18(pretrained=True)
# print(list(pretrained_net.children())[-3:]) # ResNet-18模型的最后几层
"""
[Sequential((0): BasicBlock((conv1): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(downsample): Sequential((0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(1): BasicBlock((conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))
), AdaptiveAvgPool2d(output_size=(1, 1)), Linear(in_features=512, out_features=1000, bias=True)]  
"""# 创建一个全卷积网络net。 它复制了ResNet-18中大部分的预训练层,
# 除了最后的全局平均汇聚层和最接近输出的全连接层。
net = nn.Sequential(*list(pretrained_net.children())[:-2])# ResNet-18中
"""
X = torch.rand(size=(1, 1, 96, 96))
for layer in net:X = layer(X)print(layer.__class__.__name__, 'output shape:\t', X.shape)
# Sequential output shape:         torch.Size([1, 64, 24, 24])
# Sequential output shape:         torch.Size([1, 64, 24, 24])
# Sequential output shape:         torch.Size([1, 128, 12, 12])
# Sequential output shape:         torch.Size([1, 256, 6, 6])
# Sequential output shape:         torch.Size([1, 512, 3, 3])
前向传播将输入的高和宽减小至原来的 1/32
"""
# 使用1 X 1 卷积层将输出通道数转换为Pascal VOC2012数据集的类数(21类)。 
# 最后需要将特征图的高度和宽度增加32倍,从而将其变回输入图像的高和宽。
num_classes = 21
net.add_module('final_conv', nn.Conv2d(512, num_classes, kernel_size=1))
net.add_module('transpose_conv', nn.ConvTranspose2d(num_classes, num_classes,kernel_size=64, padding=16, stride=32))
# print(list(net.children())[-2:]) 
"""
[Conv2d(512, 21, kernel_size=(1, 1), stride=(1, 1)), 
ConvTranspose2d(21, 21, kernel_size=(64, 64), stride=(32, 32), padding=(16, 16))]
"""
2.双线性插值
# 初始化转置卷积层
# 在图像处理中,我们有时需要将图像放大,即上采样(upsampling)
# 双线性插值(bilinear interpolation) 是常用的上采样方法之一,
# 它也经常用于初始化转置卷积层
# 双线性插值的上采样可以通过转置卷积层实现,内核由以下bilinear_kernel函数构造。
def bilinear_kernel(in_channels, out_channels, kernel_size):factor = (kernel_size + 1) // 2  # 计算中心因子,用于确定卷积核的中心位置if kernel_size % 2 == 1: # 确定卷积核的中心位置# 如果卷积核大小是奇数center = factor - 1else:# 如果卷积核大小是偶数center = factor - 0.5# 生成坐标网格,用于计算每个位置的双线性内核值og = (torch.arange(kernel_size).reshape(-1, 1),  # 列向量torch.arange(kernel_size).reshape(1, -1))  # 行向量# 计算双线性内核值,基于当前位置与中心位置的距离并归一化filt = (1 - torch.abs(og[0] - center) / factor) * \(1 - torch.abs(og[1] - center) / factor)# 初始化权重张量weight = torch.zeros((in_channels, out_channels, kernel_size, kernel_size))# 填充权重张量,将计算好的双线性内核值赋值给权重张量weight[range(in_channels), range(out_channels), :, :] = filt# 返回生成的双线性卷积核权重张量return weight# 定义转置卷积层 (n + 4 - 2 - 2 ) * 2
conv_trans = nn.ConvTranspose2d(3, 3, kernel_size=4, padding=1, stride=2,bias=False)
# 将双线性卷积核权重复制到转置卷积层的权重
conv_trans.weight.data.copy_(bilinear_kernel(3, 3, 4))img = torchvision.transforms.ToTensor()(d2l.Image.open('../limuPytorch/images/catdog.jpg'))
"""
d2l.Image.open('../limuPytorch/images/catdog.jpg') 首先被执行,返回一个 PIL.Image 对象。
然后,torchvision.transforms.ToTensor() 创建一个 ToTensor 对象。
最后,ToTensor 对象被调用(通过 () 运算符),将 PIL.Image 对象作为参数传递给 ToTensor 的 __call__ 方法,
转换为 PyTorch 张量。
"""
X = img.unsqueeze(0) # 添加一个新的维度,形成形状为 (1, C, H, W) 的张量 X,
Y = conv_trans(X)
out_img = Y[0].permute(1, 2, 0).detach()print('input image shape:', img.permute(1, 2, 0).shape)
# input image shape: torch.Size([561, 728, 3])
plt.imshow(img.permute(1, 2, 0))
plt.show()
print('output image shape:', out_img.shape)
# output image shape: torch.Size([1122, 1456, 3])
# 图片放大了两倍
plt.imshow(out_img)
plt.show()
3.模型训练
# 37微调章节的代码
def train_batch_ch13(net, X, y, loss, trainer, devices):"""使用多GPU训练一个小批量数据。参数:net: 神经网络模型。X: 输入数据,张量或张量列表。y: 标签数据。loss: 损失函数。trainer: 优化器。devices: GPU设备列表。返回:train_loss_sum: 当前批次的训练损失和。train_acc_sum: 当前批次的训练准确度和。"""# 如果输入数据X是列表类型if isinstance(X, list):# 将列表中的每个张量移动到第一个GPU设备X = [x.to(devices[0]) for x in X]else:X = X.to(devices[0])# 如果X不是列表,直接将X移动到第一个GPU设备y = y.to(devices[0])# 将标签数据y移动到第一个GPU设备net.train() # 设置网络为训练模式trainer.zero_grad()# 梯度清零pred = net(X) # 前向传播,计算预测值l = loss(pred, y) # 计算损失l.sum().backward()# 反向传播,计算梯度trainer.step() # 更新模型参数train_loss_sum = l.sum()# 计算当前批次的总损失train_acc_sum = d2l.accuracy(pred, y)# 计算当前批次的总准确度return train_loss_sum, train_acc_sum# 返回训练损失和与准确度和def train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs,devices=d2l.try_all_gpus()):"""训练模型在多GPU参数:net: 神经网络模型。train_iter: 训练数据集的迭代器。test_iter: 测试数据集的迭代器。loss: 损失函数。trainer: 优化器。num_epochs: 训练的轮数。devices: GPU设备列表,默认使用所有可用的GPU。"""# 初始化计时器和训练批次数timer, num_batches = d2l.Timer(), len(train_iter)# 初始化动画器,用于实时绘制训练和测试指标animator = lp.Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0, 1],legend=['train loss', 'train acc', 'test acc'])# 将模型封装成 DataParallel 模式以支持多GPU训练,并将其移动到第一个GPU设备net = nn.DataParallel(net, device_ids=devices).to(devices[0])# 训练循环,遍历每个epochfor epoch in range(num_epochs):# 初始化指标累加器,metric[0]表示总损失,metric[1]表示总准确度,# metric[2]表示样本数量,metric[3]表示标签数量metric = lp.Accumulator(4)# 遍历训练数据集for i, (features, labels) in enumerate(train_iter):timer.start()  # 开始计时# 训练一个小批量数据,并获取损失和准确度l, acc = train_batch_ch13(net, features, labels, loss, trainer, devices)metric.add(l, acc, labels.shape[0], labels.numel())   # 更新指标累加器timer.stop()  # 停止计时# 每训练完五分之一的批次或者是最后一个批次时,更新动画器if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:animator.add(epoch + (i + 1) / num_batches,(metric[0] / metric[2], metric[1] / metric[3], None))test_acc = d2l.evaluate_accuracy_gpu(net, test_iter) # 在测试数据集上评估模型准确度animator.add(epoch + 1, (None, None, test_acc))# 更新动画器# 打印最终的训练损失、训练准确度和测试准确度print(f'loss {metric[0] / metric[2]:.3f}, train acc 'f'{metric[1] / metric[3]:.3f}, test acc {test_acc:.3f}')# 打印每秒处理的样本数和使用的GPU设备信息print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec on 'f'{str(devices)}')# 全卷积网络用双线性插值的上采样初始化转置卷积层
W = bilinear_kernel(num_classes, num_classes, 64)
net.transpose_conv.weight.data.copy_(W)
# 读取数据集
batch_size, crop_size = 32, (320, 480)
train_iter, test_iter = lp.load_data_voc(batch_size, crop_size) # 46语义分割和数据集代码
# 损失函数
def loss(inputs, targets):return F.cross_entropy(inputs, targets, reduction='none').mean(1).mean(1)num_epochs, lr, wd, devices = 5, 0.001, 1e-3, d2l.try_all_gpus()
trainer = torch.optim.SGD(net.parameters(), lr=lr, weight_decay=wd)
train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs, devices)
# loss 0.443, train acc 0.863, test acc 0.848
# 254.0 examples/sec on [device(type='cuda', index=0), device(type='cuda', index=1)]
plt.show()

相关文章:

动手学深度学习(Pytorch版)代码实践 -计算机视觉-48全连接卷积神经网络(FCN)

48全连接卷积神经网络(FCN) 1.构造函数 import torch import torchvision from torch import nn from torch.nn import functional as F import matplotlib.pyplot as plt import liliPytorch as lp from d2l import torch as d2l# 构造模型 pretrained…...

【Python游戏】猫和老鼠

本文收录于 《一起学Python趣味编程》专栏,从零基础开始,分享一些Python编程知识,欢迎关注,谢谢! 文章目录 一、前言二、代码示例三、知识点梳理四、总结一、前言 本文介绍如何使用Python的海龟画图工具turtle,开发猫和老鼠游戏。 什么是Python? Python是由荷兰人吉多范…...

【无标题】c# WEBAPI 读写表到Redis

//c# WEBAPI 读写表到Redis using System; using System.Collections.Generic; using System.Linq; using System.Net; using System.Net.Http; using System.Web.Http; using Newtonsoft.Json; using StackExchange.Redis; using System.Data; using System.Web; namespace …...

【剑指Offer系列】53-0到n中缺失的数字(index)

给定一个包含 [0, n] 中 n 个数的数组 nums ,找出 [0, n] 这个范围内没有出现在数组中的那个数。 示例 1: 输入:nums [3,0,1] 输出:2 解释:n 3,因为有 3 个数字,所以所有的数字都在范围 [0,3]…...

docker compose部署zabbix7.0官方方法快速搭建

环境介绍: 系统:centos7 官方文档:https://www.zabbix.com/documentation/current/zh/manual/installation/containers docker镜像加速 vi /etc/docker/daemon.json{"registry-mirrors": ["https://docker.1panel.live&quo…...

分库分表之后如何设计主键ID(分布式ID)?

文章目录 1、数据库的自增序列步长方案2、分表键结合自增序列3、UUID4、雪花算法5、redis的incr方案总结 在进行数据库的分库分表操作后,必然要面临的一个问题就是主键id如何生成,一定是需要一个全局的id来支持,所以分库分表之后,…...

秋招突击——6/28、6.29——复习{数位DP——度的数量}——新作{}

文章目录 引言复习数位DP——度的数量个人实现参考实现 总结 引言 头一次产生了那么强烈的动摇,对于未来没有任何的感觉的,不知道将会往哪里走,不知道怎么办。可能还是因为实习吧,再加上最近复习也没有什么进展,并不知…...

Spring Boot中使用Thymeleaf进行页面渲染

Spring Boot中使用Thymeleaf进行页面渲染 大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿!今天我们将探讨如何在Spring Boot应用中使用Thymeleaf模板引擎进行页面…...

恢复策略(下)-事务故障后的数据库恢复、系统故障后的数据库恢复(检查点技术)、介质故障后的数据库恢复

一、数据库恢复-事务故障 系统通过对事物进行UNDO操作和REDO操作可实现故障后的数据库状态恢复 1、对于发生事务故障后的数据库恢复 恢复机制在不影响其他事务运行的情况下,强行回滚夭折事务,对该事务进行UNDO操作,来撤销该事务已对数据库…...

如何知道docker谁占用的显卡的显存?

文章目录 python环境安装nvidia-htop查看pid加一个追踪总结一下【找到容器创建时间】使用说明示例 再总结一下【用PID找到容器创建时间,从而找到谁创建的】使用说明示例 python环境安装nvidia-htop nvidia-htop是一个看详细的工具。 pip3 install nvidia-htop查看…...

wps linux node.js 加载项开发,和离线部署方案

环境准备 windwos 安装node.js 安装VSCode 安装wps linux 安装node.js 安装VSCode 安装wps 通过npm 安装wpsjs SDK 使用npm安装wpsjs npm install -g wpsjs 创建一个项目 wpsjs create WPS-Addin-PPT 创建项目会让你选择2个东西: 1:选择你的文…...

红队内网攻防渗透:内网渗透之内网对抗:横向移动篇Kerberos委派安全非约束系约束系RBCD资源系Spooler利用

红队内网攻防渗透 1. 内网横向移动1.1 委派安全知识点1.1.1 域委派分类1.1.2 非约束委派1.1.2.1 利用场景1.1.2.2 复现配置:1.1.2.3 利用思路1:诱使域管理员访问机器1.1.2.3.1 利用过程:主动通讯1.1.2.3.2 利用过程:钓鱼1.1.2.4 利用思路2:强制结合打印机漏洞1.1.2.5 利用…...

nginx上传文件限制

默认限制 Nginx 限制文件大小可以通过 client_max_body_size 指令来设置,该指令通常在 http、server 或 location 块中设置,如果不设置,默认上传大小为1M。 修改上传文件限制 要修改Nginx的文件上传大小限制,你需要编辑Nginx的配…...

76. 最小覆盖子串(困难)

76. 最小覆盖子串 1. 题目描述2.详细题解3.代码实现3.1 Python3.2 Java 1. 题目描述 题目中转:76. 最小覆盖子串 2.详细题解 在s中寻找一个最短的子串,使之包含t中的所有字符,t中可能存在多个相同字符,寻找的子串也应至少含有…...

K8S 集群节点扩容

环境说明: 主机名IP地址CPU/内存角色K8S版本Docker版本k8s231192.168.99.2312C4Gmaster1.23.1720.10.24k8s232192.168.99.2322C4Gwoker1.23.1720.10.24k8s233(需上线)192.168.99.2332C4Gwoker1.23.1720.10.24 当现有集群中的节点资源不够用&…...

AI大模型技术在音乐创造的应用前景

大模型技术在音乐创作领域具有广阔的应用前景,可以为音乐家、作曲家和音乐爱好者提供以下方面的帮助。北京木奇移动技术有限公司,专业的软件外包开发公司,欢迎交流合作。 音乐创作辅助:大模型可以帮助音乐家和作曲家生成旋律、和声…...

Linux多进程和多线程(一)-进程的概念和创建

进程 进程的概念进程的特点如下进程和程序的区别LINUX进程管理 getpid()getppid() 进程的地址空间虚拟地址和物理地址进程状态管理进程相关命令 ps toppstreekill 进程的创建 并发和并行fork() 父子进程执行不同的任务创建多个进程 进程的退出 exit()和_exit() exit()函数让当…...

熊猫烧香是什么?

熊猫烧香(Worm.WhBoy.cw)是一种由李俊制作的电脑病毒,于2006年底至2007年初在互联网上大规模爆发。这个病毒因其感染后的系统可执行文件图标会变成熊猫举着三根香的模样而得名。熊猫烧香病毒具有自动传播、自动感染硬盘的能力,以及…...

使用Vue3和Tailwind CSS快速搭建响应式布局

### 第一部分:初始化Vue3项目并安装Tailwind CSS 首先,在你的开发环境中打开终端,然后通过Vue CLI来创建一个新的Vue3项目。输入如下命令: vue create my-vue-app 按照提示选择Vue3的相关选项,创建完毕后&#xff0…...

J019_选择排序

一、排序算法 排序过程和排序原理如下图所示&#xff1a; 二、代码实现 package com.itheima.sort;import java.util.Arrays;public class SelectSort {public static void main(String[] args) {int[] arr {5, 4, 3, 1, 2};//选择排序for (int i 0; i < arr.length - 1…...

【linux】vim的使用

目录 一、Vim的基本模式 二、Vim的常见命令 三、Vim的高级用法 四、Vim的进阶使用技巧 在Linux系统中&#xff0c;Vim是一款功能强大的文本编辑器&#xff0c;特别适用于程序员的代码编辑和修改。以下是Vim的详细使用教程&#xff0c;包括其基本模式、常见命令和高级用法。…...

【工具测评】ONLYOFFICE8.1版本桌面编辑器测评:好用!

随着远程工作的普及和数字化办公的发展&#xff0c;越来越多的人开始寻找功能强大、易于使用的办公软件。在这个背景下&#xff0c;ONLYOFFICE 8.1应运而生&#xff0c;成为许多用户的新选择。ONLYOFFICE 8.1是一款办公套件软件&#xff0c;提供文档处理、电子表格和幻灯片制作…...

核方法总结(四)——高斯过程回归学习笔记

一、定义 基于核方法的线性回归模型和传统线性回归一样&#xff0c;可以用未知数据进行预测&#xff0c;但不能确定 预测的可信度。在参考书第二章中可知&#xff0c;基于贝叶斯方法可以实现对未知数据依概率预测&#xff0c;进而可得到预测的可信度。这一方法中&#xff0c;通…...

【Python3的内置函数和使用方法】

目录 Python 特点 Python 中文编码 Python 变量类型 Python列表 Python 元组 元组是另一个数据类型&#xff0c;类似于 List&#xff08;列表&#xff09; Python 字典 Python数据类型转换 Python 运算符 Python算术运算符 Python比较运算符 Python赋值运算符 Pyt…...

递推算法计算信号特征

在线算法&#xff08;在线计算或递推计算&#xff09;能够在不存储全部数据的情况下逐步更新信号的特征信息&#xff0c;非常适合资源受限的单片机应用场景。 用途&#xff1a;单片机边采集&#xff21;&#xff24;&#xff23;边计算&#xff0c;最终将采集的信号特征计算结果…...

spring-boot-configuration-processor注释处理器

开源项目SDK&#xff1a;https://github.com/mingyang66/spring-parent 个人文档&#xff1a;https://mingyang66.github.io/raccoon-docs/#/ spring-boot-configuration-processor是springboot提供的一个注释处理器&#xff08;annotation processor&#xff09;,它用于在编译…...

Python和MATLAB粘性力接触力动态模型半隐式欧拉算法

&#x1f3af;要点 &#x1f3af;运动力模型计算制作过程&#xff1a;&#x1f58a;相机捕捉网球运动图&#xff0c;制定运动数学模型&#xff0c;数值微分运动方程 | &#x1f58a;计算运动&#xff0c;欧拉算法离散积分运动&#xff0c;欧拉-克罗默算法微分运动方程 &#…...

webstorm无法识别tsconfig.json引用项目配置文件中的路径别名

问题 vite项目模板中&#xff0c;应用的ts配置内容写在tsconfig.app.json文件中&#xff0c;并在tsconfig.json通过项目引用的方式导入 {"files": [],"references": [{"path": "./tsconfig.app.json"},{"path": "./t…...

qiankun微前端:qiankun+vite+vue3+ts(未完待续..)

目录 什么是微前端 目前现有的微前端 好处 使用 子应用的页面在主应用里显示 什么是微前端 微前端是一种多个团队通过独立发布功能的方式来共同构建现代化 web 应用的技术手段及方法策略。 我的理解就是将一个大型的前端应用拆分成多个模块&#xff0c;每个微前端模块可以由…...

001:开源交易系统开发实战开篇

本专栏采用融入【主力思维】的方法学&#xff0c;包含数据抓取、特征模型开发、历史验证回归测试、每日动态风险评估管理等技术&#xff0c;较大的增强股票投资胜率&#xff0c;让IT开发者拥有一套属于自己思路的专用交易软件。 先简要介绍系统成功和项目&#xff0c;后续持续…...

Pytorch实战(一):LeNet神经网络

文章目录 一、模型实现1.1数据集的下载1.2加载数据集1.3模型训练1.4模型预测 LeNet神经网络是第一个卷积神经网络&#xff08;CNN&#xff09;&#xff0c;首次采用了卷积层、池化层这两个全新的神经网络组件&#xff0c;接收灰度图像&#xff0c;并输出其中包含的手写数字&…...

RabbitMq的基础及springAmqp的使用

RabbitMq 官网:RabbitMQ: One broker to queue them all | RabbitMQ 什么是MQ&#xff1f; mq就是消息队列&#xff0c;消息队列遵循这先入先出原则。一般用来解决应用解耦&#xff0c;异步消息&#xff0c;流量削峰等问题&#xff0c;实现高性能&#xff0c;高可用&#xf…...

uniapp uniCloud云开发

uniCloud概述 uniCloud 是 DCloud 联合阿里云、腾讯云、支付宝云&#xff0c;为开发者提供的基于 serverless 模式和 js 编程的云开发平台。 uniCloud 的 web控制台地址&#xff1a;https://unicloud.dcloud.net.cn 文档&#xff1a;https://doc.dcloud.net.cn/uniCloud/ un…...

智能扫地机,让生活电器更加便民-NV040D扫地机语音方案

一、语音扫地机开发背景&#xff1a; 随着人工智能和物联网技术的飞速发展&#xff0c;智能家居设备已成为现代家庭不可或缺的一部分。其中&#xff0c;扫地机作为家庭清洁的重要工具&#xff0c;更是得到了广泛的关注和应用。 然而&#xff0c;传统的扫地机在功能和使用上仍存…...

【后端面试题】【中间件】【NoSQL】ElasticSearch索引机制和高性能的面试思路

Elasticsearch的索引机制 Elasticsearch使用的是倒排索引&#xff0c;所谓的倒排索引是相对于正排索引而言的。 在一般的文件系统中&#xff0c;索引是文档映射到关键字&#xff0c;而倒排索引则相反&#xff0c;是从关键字映射到文档。 如果没有倒排索引的话&#xff0c;想找…...

【漏洞复现】时空智友ERP updater.uploadStudioFile接口处存在任意文件上传

0x01 产品简介 时空智友ERP是一款基于云计算和大数据技术的企业资源计划管理系统。该系统旨在帮助企业实现数字化转型&#xff0c;提高运营效率、降低成本、增强决策能力和竞争力&#xff0c;时空智友ERP系统涵盖了企业的各个业务领域&#xff0c;包括财务管理、供应链管理、生…...

[leetcode hot 150]第五百三十题,二叉搜索树的最小绝对差

题目&#xff1a; 给你一个二叉搜索树的根节点 root &#xff0c;返回 树中任意两不同节点值之间的最小差值 。 差值是一个正数&#xff0c;其数值等于两值之差的绝对值。 解析&#xff1a; minDiffInBST 方法是主要方法。创建一个 ArrayList 来存储树的节点值。inorderTrave…...

【Docker】可视化平台Portainer

文章目录 Portainer的特点Portainer的安装步骤注意事项 Docker的可视化工具Portainer是一个轻量级的容器管理平台&#xff0c;它为用户提供了一个直观的图形界面来管理Docker环境。以下是关于Portainer的详细介绍和安装步骤&#xff1a; Portainer的特点 轻量级&#xff1a;P…...

MySQL高级-MVCC-原理分析(RR级别)

文章目录 1、RR隔离级别下&#xff0c;仅在事务中第一次执行快照读时生成ReadView&#xff0c;后续复用该ReadView2、总结 1、RR隔离级别下&#xff0c;仅在事务中第一次执行快照读时生成ReadView&#xff0c;后续复用该ReadView 而RR 是可重复读&#xff0c;在一个事务中&…...

压力测试Monkey命令参数和报告分析

目录 常用参数 -p <测试的包名列表> -v 显示日志详细程度 -s 伪随机数生成器的种子值 --throttle < 毫秒> --ignore-crashes 忽略崩溃 --ignore-timeouts 忽略超时 --monitor-native-crashes 监视本地崩溃代码 --ignore-security-exceptions 忽略安全异常 …...

C# Benchmark

创建控制台项目&#xff08;或修改现有项目的Main方法代码&#xff09;&#xff0c;Nget导入Benchmark0.13.12&#xff0c;创建测试类&#xff1a; public class StringBenchMark{int[] numbers;public StringBenchMark() {numbers Enumerable.Range(1, 20000).ToArray();}[Be…...

算法金 | 协方差、方差、标准差、协方差矩阵

大侠幸会&#xff0c;在下全网同名「算法金」 0 基础转 AI 上岸&#xff0c;多个算法赛 Top 「日更万日&#xff0c;让更多人享受智能乐趣」 抱个拳&#xff0c;送个礼 1. 方差 方差是统计学中用来度量一组数据分散程度的重要指标。它反映了数据点与其均值之间的偏离程度。在…...

FastAPI教程II

本文参考FastAPI教程https://fastapi.tiangolo.com/zh/tutorial Cookie参数 定义Cookie参数与定义Query和Path参数一样。 具体步骤如下&#xff1a; 导入Cookie&#xff1a;from fastapi import Cookie声明Cookie参数&#xff0c;声明Cookie参数的方式与声明Query和Path参数…...

Facebook的投流技巧有哪些?

相信大家都知道Facebook拥有着巨大的用户群体和高转化率&#xff0c;在国外社交推广中的影响不言而喻。但随着Facebook广告的竞争越来越激烈&#xff0c;在Facebook广告上获得高投资回报率也变得越来越困难。IPIDEA代理IP今天就教大家如何在Facebook上投放广告的技巧&#xff0…...

Spring Boot 中的微服务监控与管理

微服务的概述 微服务架构的优点和挑战 优点: 灵活性和可扩展性:微服务架构允许每个服务单独部署和扩展,这使得系统可以更灵活地适应不同的业务需求和负载变化。 使团队更加聚焦:每个微服务都有明确的职责,这使得开发团队可以更加聚焦,专注于开发他们的服务。 技术和框…...

【计算机网络】期末复习(1)模拟卷

一、选择题 1. 电路交换的三个阶段是建立连接、()和释放连接 A. Hello包探测 B. 通信 C. 二次握手 D. 总线连接 2. 一下哪个协议不属于C/S模式() A. SNMP…...

【软件工程中的演化模型及其优缺点】

文章目录 1. 增量模型什么是增量模型&#xff1f;优点缺点 2. 增量-迭代模型什么是增量-迭代模型&#xff1f;优点缺点 3. 螺旋模型什么是螺旋模型&#xff1f;优点缺点 1. 增量模型 什么是增量模型&#xff1f; 增量模型是一种逐步增加功能和特性的开发方法。项目被划分为多…...

Oracle 数据库详解:概念、结构、使用场景与常用命令

1. 引言 Oracle 数据库作为全球领先的关系型数据库管理系统&#xff08;RDBMS&#xff09;&#xff0c;在企业级应用中占据了重要地位。本文将详细介绍Oracle数据库的核心概念、架构、常用操作及其广泛的使用场景&#xff0c;旨在为读者提供全面而深入的理解。 2. Oracle 数据…...

FreeRTOS的裁剪与移植

文章目录 1 FreeRTOS裁剪与移植1.1 FreeRTOS基础1.1.1 RTOS与GPOS1.1.2 堆与栈1.1.3 FreeRTOS核心文件1.1.4 FreeRTOS语法 1.2 FreeRTOS移植和裁剪 1 FreeRTOS裁剪与移植 1.1 FreeRTOS基础 1.1.1 RTOS与GPOS ​ 实时操作系统&#xff08;RTOS&#xff09;&#xff1a;是指当…...

能求一个数字的字符数量的程序

目录 开头程序程序的流程图程序输入与打印的效果例1输入输出 例2输入输出 关于这个程序的一些实用内容结尾 开头 大家好&#xff0c;我叫这是我58&#xff0c;今天&#xff0c;我们先来看一下下面的程序。 程序 #define _CRT_SECURE_NO_WARNINGS 1 #include <stdio.h>…...

智能生产管理系统设计

智能生产管理系统的设计旨在提升制造业的效率、灵活性和响应速度&#xff0c;通过集成先进的信息技术&#xff08;如物联网IoT、大数据分析、人工智能AI、云计算等&#xff09;实现生产过程的智能化。以下是一些关键设计要素和步骤&#xff0c;用于构建一个高效的智能生产管理系…...

05.C1W4.Machine Translation and Document Search

目录 OverviewWhat you’ll be able to do!Learning Objectives Transforming word vectorsOverview of TranslationTransforming vectors Align word vectorsSolving for RFrobenius normFrobenius norm squaredGradient K nearest neighborsFinding the translationNearest n…...

微信小程序template模板引入

如图&#xff1a;temp.wxml是template引入的模板 在two.wxml中&#xff1a; import&#xff1a;是引入temp的页面让template中的内容显示出来在two页面中&#xff1b; include:是显示temp页面内容不在template包裹&#xff0c;template以外的view标签文字和不在view的文字让…...

HTML内容爬取:使用Objective-C进行网页数据提取

网页爬取简介 网页爬取&#xff0c;通常被称为网络爬虫或爬虫&#xff0c;是一种自动浏览网页并提取所需数据的技术。这些数据可以是文本、图片、链接或任何网页上的元素。爬虫通常遵循一定的规则&#xff0c;访问网页&#xff0c;解析页面内容&#xff0c;并存储所需信息。 …...

qt结合vs2022安装

进入清华大学开源软件&#xff1a; 清华大学开源软件镜像站 | Tsinghua Open Source Mirror 下载完成后&#xff0c;双击进行安装&#xff1a; 进入邮箱进行验证&#xff1a; 可能是因为网络问题&#xff0c;无法安装。 重新安装5.12.12版本。 安装后启动失败&#xff0c;重新…...

layui-按钮

1.用法 使用 用button标签 type"button" class"layui-button" 效果&#xff1a; 2.主题设置 前面都要加上layui-bin 3.尺寸设置 可以叠加使用&#xff01; 4.圆角设置 加一个layui-bin-radius 5.按钮图标设置 里面加一个i标签 加class"layui-…...

引领SUV新风尚:新一代哈弗H6预售,科技与美学双重革新

哈弗H6作为长城汽车旗下的紧凑型SUV,一直以来都备受消费者的青睐。近日,新一代哈弗H6正式开启了预售,吸引了众多目光。外观方面,新一代哈弗H6采用了“星河美学”设计语言,整体造型更加时尚、动感。前脸配备了全新点阵式前中网,格栅尺寸更大,取消了镀铬边框,使前脸看上去…...

上市后跌幅达70%,格灵深瞳风投股东继续减持

被明星资本助推上市的格灵深瞳,如今也被资本集体抛下。初创时实控人构建的视觉AI故事迅速迎起资本注意,真格基金、策源创投以及红杉资本等机构早早入局。然而成立十一年,格灵深瞳仍在亏损的泥潭里迟迟挣扎,IPO限售期满,机构争先恐后减持退出。6月18日,红杉资本减持股份超…...

五菱高管发文“明年更卷”,消费者:车市越卷,我越幸福

日前,上汽通用五菱品牌事业部副总经理周钘在社交平台上发文称,“2024年初至今,宝骏停掉了所有的市场费用。企业认为如果产品、市场、渠道三者节奏都不对则是‘白费’”,“虽然今年行业确实卷,明年会更卷,但我们所有准备”。周钘从车企的角度,说出了车市竞争的残酷。不仅…...

未来三年雷军和他的小米汽车首先不得不为生存而战

小米SU7正式上市,可谓红透了汽车界。雷军及小米汽车多个话题登上热搜,而大定的数据也映衬出小米SU7的热度。然而,在一片喧嚣声中,我倒觉得,未来三年雷军和他的小米汽车首先不得不为生存而战。未来三年小米汽车大概率将是亏损运营。从这次小米SU7的定价就可以看出端倪。小米…...

富格林:借助正规技巧实现出金

富格林悉知&#xff0c;现货黄金近年来的表现相当出众&#xff0c;相信上车交易现货黄金的投资者&#xff0c;或多或少都在市场中分得一块蛋糕。不过也并不代表所有人都可以轻松在现货黄金中获利&#xff0c;尤其是投资新手。如果没有正规的投资经验观念&#xff0c;就很难实现…...

摩尔线程MTT S4000 AI GPU助力30亿参数大模型训练,性能比肩英伟达同类解决方案

中国国产GPU制造商摩尔线程(Moore Threads)在AI加速器领域取得了显著进展&#xff0c;其最新推出的MTT S4000 AI GPU在训练大规模语言模型时表现突出&#xff0c;据称相较于其前代产品有着显著的性能提升。根据cnBeta的报道&#xff0c;搭载S4000 GPU的全新“酷鹅千卡智能计算集…...