当前位置: 首页 > news >正文

如何利用python画出AHP-SWOT的战略四边形(四象限图)

在企业或产业发展的相关论文分析中,常用到AHP-SWOT法进行定量分析,形成判断矩阵后,如何构造整洁的战略四边形是分析的最后一个环节,本文现将相关代码发布如下:

import mpl_toolkits.axisartist as axisartist
import matplotlib.pyplot as plt#创建画布
fig = plt.figure(figsize=(8, 8))
#使用axisartist.Subplot方法创建一个绘图区对象ax
ax = axisartist.Subplot(fig, 111)  
#将绘图区对象添加到画布中
fig.add_axes(ax)#通过set_visible方法设置绘图区所有坐标轴隐藏
ax.axis[:].set_visible(False)#ax.new_floating_axis代表添加新的坐标轴
ax.axis["x"] = ax.new_floating_axis(0,0)
#给x坐标轴加上箭头
ax.axis["x"].set_axisline_style("->", size = 1.0)
#添加y坐标轴,且加上箭头
ax.axis["y"] = ax.new_floating_axis(1,0)
ax.axis["y"].set_axisline_style("-|>", size = 1.0)
#设置x、y轴上刻度显示方向
ax.axis["x"].set_axis_direction("top")
ax.axis["y"].set_axis_direction("right")
#隐藏刻度
ax.set_xticks([])
ax.set_yticks([])plt.rcParams['font.sans-serif'] = ['Times New Roman'] # 指定默认字体
plt.rcParams['axes.unicode_minus'] = False # 解决保存图像是负号'-'显示为方块的问题#依次输入位于S\O\W\T轴上的点坐标,注意,为了形成闭环,需要再次添加S轴点作为第五个点!
x=[0.171,0,-0.04,0,0.171]
y=[0,0.089,0,-0.361,0]#以下为坐标显示,大家可以根据点的位置进行修改,贴近但又不遮拦点位即可
x1=[0.171,0.01,  -0.08,0.01,      0.171]
y1=[0.01  ,0.089,0.01,     -0.361,0.01]#x轴与y轴的显示长度,务必要覆盖所有的输入点,为美观可适当调整上下左右的长短
plt.xlim(-0.2, 0.2)  # x轴范围从-0.2到0.2
plt.ylim(-0.4, 0.2) # y轴范围从-0.4到0.2
plt.plot(x,y)# 为每个点添加坐标标注
for i in range(len(x)):if i<4:plt.annotate(f'({x[i]}, {y[i]})', xy=(x1[i], y1[i]))#显示坐标轴的名称与方位
plt.annotate(f'S', xy=(0.2, -0.03))
plt.annotate(f'O', xy=(0.01, 0.2))
plt.annotate(f'W', xy=(-0.15, 0.01))
plt.annotate(f'T', xy=(-0.01, -0.4))
plt.annotate(f'A', xy=(0.01, -0.03))plt.show()

样品图如下:

下面将分析代码的功能

1.坐标输入

#依次输入位于S\O\W\T轴上的点坐标,注意,为了形成闭环,需要再次添加S轴点作为第五个点!
x=[0.171,0,-0.04,0,0.171]
y=[0,0.089,0,-0.361,0]

以上就是按照逆时针顺序输入坐标(0.171,0)(0,0.089)(-0.04,0)(0,-0.361),由于语句

plt.plot(x,y)

是逐个连点,如不补充第五个点,第四个点与第一个点就未连贯,因此特意将第一个点作为第五个点再次输入。

2.坐标的标注(微调即可)

相关文章:

如何利用python画出AHP-SWOT的战略四边形(四象限图)

在企业或产业发展的相关论文分析中&#xff0c;常用到AHP-SWOT法进行定量分析&#xff0c;形成判断矩阵后&#xff0c;如何构造整洁的战略四边形是分析的最后一个环节&#xff0c;本文现将相关代码发布如下&#xff1a; import mpl_toolkits.axisartist as axisartist import …...

适用于智慧城市、智慧文旅等在线场景的轻量级3D数字人引擎MyAvatar简介

本人研发的国内首个纯面向web应用和小程序的轻量级3D虚拟人引擎MyAvatar。 功能简述 支持3D模型定制&#xff08;写实或卡通风格均可&#xff0c;人物模型需实现绑定和变形&#xff09;动画可以内置于模型中&#xff0c;也可以单独以glb或fbx格式导出并动态加载支持readyplay…...

Excel显示/隐藏批注按钮为什么是灰色?

在excel中&#xff0c;经常使用批注来加强数据信息的提示&#xff0c;有时候会把很多的批注显示出来&#xff0c;但是再想将它们隐藏起来&#xff0c;全选工作表后&#xff0c;“显示/隐藏批注”按钮是灰色的&#xff0c;不可用。 二、可操作方法 批注在excel、WPS表格中都是按…...

ArtTS系统能力-通知的学习(3.1)

上篇回顾&#xff1a; ArtTS语言基础类库-容器类库内容的学习(2.10.2&#xff09; 本篇内容&#xff1a; ArtTS系统能力-通知的学习&#xff08;3.1&#xff09; 一、 知识储备 1. 基础类型通知 按内容分成四类&#xff1a; 类型描述NOTIFICATION_CONTENT_BASIC_TEXT普通文…...

Apollo9.0 PNC源码学习之Planning模块(三)—— public_road_planner

前面文章: (1)Apollo9.0 PNC源码学习之Planning模块(一)—— 规划概览 (2)Apollo9.0 PNC源码学习之Planning模块(二)—— planning_component 1 planning_interface_base 规划接口基类: planning\planning_interface_base\planner_base\planner.h #pragma once#in…...

【Elasticsearch】linux使用supervisor常驻Elasticsearch,centos6.10安装 supervisor

背景&#xff1a; linux服务器&#xff0c;CentOS 6操作系统&#xff0c;默认版本python2.6.6&#xff0c;避免安装过多的依赖不升级python 在网上查的资料python2.6.6兼容supervisor版本 3.1.3 安装supervisor 手动在python官网下载supervisor&#xff0c;并上传到服务器 下…...

推荐系统三十六式学习笔记:原理篇.模型融合14|一网打尽协同过滤、矩阵分解和线性模型

目录 从特征组合说起FM模型1.原理2.模型训练3.预测阶段4.一网打尽其他模型5.FFM 总结 在上一篇文章中&#xff0c;我们讲到了使用逻辑回归和梯度提升决策树组合的模型融合办法&#xff0c;用于CTR预估&#xff0c;给这个组合起了个名字&#xff0c;叫“辑度组合”。这对组合中&…...

如何使用mapXplore将SQLMap数据转储到关系型数据库中

关于mapXplore mapXplore是一款功能强大的SQLMap数据转储与管理工具&#xff0c;该工具基于模块化的理念开发&#xff0c;可以帮助广大研究人员将SQLMap数据提取出来&#xff0c;并转储到类似PostgreSQL或SQLite等关系型数据库中。 功能介绍 当前版本的mapXplore支持下列功能…...

JAVA设计模式-大集合数据拆分

背景 我们在做软件开发时&#xff0c;经常会遇到把大集合的数据&#xff0c;拆分成子集合处理。例如批量数据插入数据库时&#xff0c;一次大约插入5000条数据比较合理&#xff0c;但是有时候待插入的数据远远大于5000条。这时候就需要进行数据拆分。数据拆分基本逻辑并不复杂&…...

如何使用sr2t将你的安全扫描报告转换为表格格式

关于sr2t sr2t是一款针对安全扫描报告的格式转换工具&#xff0c;全称为“Scanning reports to tabular”&#xff0c;该工具可以获取扫描工具的输出文件&#xff0c;并将文件数据转换为表格格式&#xff0c;例如CSV、XLSX或文本表格等&#xff0c;能够为广大研究人员提供一个…...

ansible自动化运维,(2)ansible-playbook

三种常见的数据格式&#xff1a; XML&#xff1a;可扩展标记语言&#xff0c;用于数据交换和配置 JSON&#xff1a;对象标记法&#xff0c;主要用来数据交换或配置&#xff0c;不支持注释 YAML&#xff1a;不是一种标记语言&#xff0c;主要用来配置&#xff0c;大小写敏感&…...

一分钟学习数据安全—自主管理身份SSI分布式标识DID介绍

SSI标准化的两大支柱&#xff0c;一个是VC&#xff0c;之前简单介绍过&#xff0c;另一个就是DID。基本层次上&#xff0c;DID就是一种新型的全局唯一标识符&#xff0c;跟浏览器的URL没有什么不同。深层次上&#xff0c;DID是互联网分布式数字身份和PKI新层级的原子构件。 一…...

[单master节点k8s部署]11.服务service

service service是一个固定接入层&#xff0c;客户端 可以访问service的ip和端口&#xff0c;访问到service关联的后端pod&#xff0c;这个service工作依赖于dns服务&#xff08;coredns&#xff09; 每一个k8s节点上都有一个组件叫做kube-proxy&#xff0c;始终监视着apiser…...

ES6面试题——箭头函数和普通函数有什么区别

1. this指向问题 <script> let obj {a: function () {console.log(this); // 打印出&#xff1a;{a: ƒ, b: ƒ}},b: () > {console.log(this); // 打印出Window {window: Window, self: Window,...}}, }; obj.a(); obj.b(); </script> 箭头函数中的this是在箭…...

WordPress中文网址导航栏主题风格模版HaoWa

模板介绍 WordPress响应式网站中文网址导航栏主题风格模版HaoWa1.3.1源码 HaoWA主题风格除行为主体导航栏目录外&#xff0c;对主题风格需要的小控制模块都开展了敞开式的HTML在线编辑器方式的作用配备&#xff0c;另外预埋出默认设置的编码构造&#xff0c;便捷大伙儿在目前…...

ThreadPoolExecutor基于ctl变量的声明周期管理

个人博客 ThreadPoolExecutor基于ctl变量的声明周期管理 | iwts’s blog 总集 想要完整了解下ThreadPoolExecutor&#xff1f;可以参考&#xff1a; 基于源码详解ThreadPoolExecutor实现原理 | iwts’s blog ctl字段的应用 线程池内部使用一个变量ctl维护两个值&#xff…...

运维锅总详解Prometheus

本文尝试从Prometheus简介、架构、各重要组件详解、relable_configs最佳实践、性能能优化及常见高可用解决方案等方面对Prometheus进行详细阐述。希望对您有所帮助&#xff01; 一、Prometheus简介 Prometheus 是一个开源的系统监控和报警工具&#xff0c;最初由 SoundCloud …...

深入解析Tomcat:Java Web服务器(上)

深入解析Tomcat&#xff1a;Java Web服务器&#xff08;上&#xff09; Apache Tomcat是一个开源的Java Web服务器和Servlet容器&#xff0c;用于运行Java Servlets和JavaServer Pages (JSP)。Tomcat在Java Web应用开发中扮演着重要角色。本文将详细介绍Tomcat的基本概念、安装…...

【第9章】MyBatis-Plus持久层接口之SimpleQuery

文章目录 前言一、使用步骤1.引入 SimpleQuery 工具类2.使用 SimpleQuery 进行查询 二、使用提示三、功能详解1. keyMap1.1 方法签名1.2 参数说明1.3 使用示例1.4 使用提示 2. map2.1 方法签名2.2 参数说明2.3 使用示例2.4 使用提示 3. group3.1 方法签名3.2 参数说明3.3 使用示…...

一文带你了解乐观锁和悲观锁的本质区别!

文章目录 悲观锁是什么&#xff1f;乐观锁是什么&#xff1f;如何实现乐观锁&#xff1f;什么是CAS应用局限性ABA问题是什么&#xff1f; 悲观锁是什么&#xff1f; 悲观锁它总是假设最坏的情况&#xff0c;它会认为共享资源在每次被访问的时候就会出现线程安全问题&#xff0…...

大数据学习栈记——Neo4j的安装与使用

本文介绍图数据库Neofj的安装与使用&#xff0c;操作系统&#xff1a;Ubuntu24.04&#xff0c;Neofj版本&#xff1a;2025.04.0。 Apt安装 Neofj可以进行官网安装&#xff1a;Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...

golang循环变量捕获问题​​

在 Go 语言中&#xff0c;当在循环中启动协程&#xff08;goroutine&#xff09;时&#xff0c;如果在协程闭包中直接引用循环变量&#xff0c;可能会遇到一个常见的陷阱 - ​​循环变量捕获问题​​。让我详细解释一下&#xff1a; 问题背景 看这个代码片段&#xff1a; fo…...

MongoDB学习和应用(高效的非关系型数据库)

一丶 MongoDB简介 对于社交类软件的功能&#xff0c;我们需要对它的功能特点进行分析&#xff1a; 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具&#xff1a; mysql&#xff1a;关系型数据库&am…...

UDP(Echoserver)

网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法&#xff1a;netstat [选项] 功能&#xff1a;查看网络状态 常用选项&#xff1a; n 拒绝显示别名&#…...

Leetcode 3577. Count the Number of Computer Unlocking Permutations

Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接&#xff1a;3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯&#xff0c;要想要能够将所有的电脑解锁&#x…...

Golang dig框架与GraphQL的完美结合

将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用&#xff0c;可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器&#xff0c;能够帮助开发者更好地管理复杂的依赖关系&#xff0c;而 GraphQL 则是一种用于 API 的查询语言&#xff0c;能够提…...

oracle与MySQL数据库之间数据同步的技术要点

Oracle与MySQL数据库之间的数据同步是一个涉及多个技术要点的复杂任务。由于Oracle和MySQL的架构差异&#xff0c;它们的数据同步要求既要保持数据的准确性和一致性&#xff0c;又要处理好性能问题。以下是一些主要的技术要点&#xff1a; 数据结构差异 数据类型差异&#xff…...

镜像里切换为普通用户

如果你登录远程虚拟机默认就是 root 用户&#xff0c;但你不希望用 root 权限运行 ns-3&#xff08;这是对的&#xff0c;ns3 工具会拒绝 root&#xff09;&#xff0c;你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案&#xff1a;创建非 roo…...

Linux云原生安全:零信任架构与机密计算

Linux云原生安全&#xff1a;零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言&#xff1a;云原生安全的范式革命 随着云原生技术的普及&#xff0c;安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测&#xff0c;到2025年&#xff0c;零信任架构将成为超…...

让AI看见世界:MCP协议与服务器的工作原理

让AI看见世界&#xff1a;MCP协议与服务器的工作原理 MCP&#xff08;Model Context Protocol&#xff09;是一种创新的通信协议&#xff0c;旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天&#xff0c;MCP正成为连接AI与现实世界的重要桥梁。…...