当前位置: 首页 > news >正文

动手学深度学习(Pytorch版)代码实践 -计算机视觉-39实战Kaggle比赛:狗的品种识别(ImageNet Dogs)

39实战Kaggle比赛:狗的品种识别(ImageNet Dogs

比赛链接:Dog Breed Identification | Kaggle

1.导入包
import torch
from torch import nn
import collections
import math
import os
import shutil
import torchvision
from d2l import torch as d2l
import matplotlib.pyplot as plt
import liliPytorch as lp
2.数据集处理
# 精简数据集
# file_path = '../data/kaggle_dog_tiny/'
# 原数据集
file_path = '../data/dog-breed-identification/'# 整理数据集
# 从原始训练集中拆分验证集,然后将图像移动到按标签分组的子文件夹中。
#@save
def read_csv_labels(fname):"""读取CSV文件中的标签,它返回一个字典,该字典将文件名中不带扩展名的部分映射到其标签"""with open(fname, 'r') as f:# 跳过文件头行(列名)lines = f.readlines()[1:]tokens = [l.rstrip().split(',') for l in lines]return dict(((name, label) for name, label in tokens))# labels = read_csv_labels(os.path.join(file_path, 'labels.csv'))
# print(labels) # {'0097c6242c6f3071762d9f85c3ef1b2f': 'bedlington_terrier', '00a338a92e4e7bf543340dc849230e75': 'dingo'}
# print('训练样本 :', len(labels)) # 训练样本 : 1000
# print('类别 :', len(set(labels.values()))) # 类别 : 120# 定义reorg_train_valid函数来将验证集从原始的训练集中拆分出来
#@save
def copyfile(filename, target_dir):"""将文件复制到目标目录"""os.makedirs(target_dir, exist_ok=True)shutil.copy(filename, target_dir)#@save
def reorg_train_valid(data_dir, labels, valid_ratio):"""将验证集从原始的训练集中拆分出来"""# 训练数据集中样本最少的类别中的样本数n = collections.Counter(labels.values()).most_common()[-1][1]# 验证集中每个类别的样本数n_valid_per_label = max(1, math.floor(n * valid_ratio))label_count = {}for train_file in os.listdir(os.path.join(data_dir, 'train')): # 遍历训练集文件夹中的所有文件。label = labels[train_file.split('.')[0]] # 获取文件名(去掉扩展名)fname = os.path.join(data_dir, 'train', train_file) # 构建完整的文件路径copyfile(fname, os.path.join(data_dir, 'train_valid_test','train_valid', label))if label not in label_count or label_count[label] < n_valid_per_label:copyfile(fname, os.path.join(data_dir, 'train_valid_test','valid', label))label_count[label] = label_count.get(label, 0) + 1else:copyfile(fname, os.path.join(data_dir, 'train_valid_test','train', label))return n_valid_per_label# reorg_test函数用来在预测期间整理测试集
#@save
def reorg_test(data_dir):"""在预测期间整理测试集,以方便读取"""for test_file in os.listdir(os.path.join(data_dir, 'test')):copyfile(os.path.join(data_dir, 'test', test_file),os.path.join(data_dir, 'train_valid_test', 'test','unknown'))def reorg_dog_data(data_dir, valid_ratio):labels = read_csv_labels(os.path.join(data_dir, 'labels.csv'))reorg_train_valid(data_dir, labels, valid_ratio)reorg_test(data_dir)reorg_dog_data(file_path, valid_ratio = 0.1)
3.数据集加载
# 数据图像增广
# 训练
transform_train = torchvision.transforms.Compose([# 随机裁剪图像,所得图像为原始面积的0.08~1之间,高宽比在3/4和4/3之间。# 然后,缩放图像以创建224x224的新图像torchvision.transforms.RandomResizedCrop(224, scale=(0.08, 1.0),ratio=(3.0/4.0, 4.0/3.0)),torchvision.transforms.RandomHorizontalFlip(),# 随机更改亮度,对比度和饱和度torchvision.transforms.ColorJitter(brightness=0.4,contrast=0.4,saturation=0.4),# 添加随机噪声torchvision.transforms.ToTensor(),# 标准化图像的每个通道torchvision.transforms.Normalize([0.485, 0.456, 0.406],[0.229, 0.224, 0.225])])
# 测试
transform_test = torchvision.transforms.Compose([torchvision.transforms.Resize(256),# 从图像中心裁切224x224大小的图片torchvision.transforms.CenterCrop(224),torchvision.transforms.ToTensor(),torchvision.transforms.Normalize([0.485, 0.456, 0.406],[0.229, 0.224, 0.225])])# 读取数据集
# 创建数据集对象
# 通常用于定义数据源及其预处理方法。
train_dataset, train_valid_dataset = [# ImageFolder 创建数据集时,它会遍历指定目录下的所有子文件夹,# 并将每个子文件夹的名称作为一个类别标签。然后,它会按字母顺序给每个类别分配一个索引torchvision.datasets.ImageFolder(os.path.join(file_path, 'train_valid_test', folder),transform=transform_train) for folder in ['train', 'train_valid']]valid_dataset, test_dataset = [torchvision.datasets.ImageFolder(os.path.join(file_path, 'train_valid_test', folder),transform=transform_test) for folder in ['valid', 'test']]# 显示每个类别名称和对应的索引
# print(train_dataset.class_to_idx) 4
# {'affenpinscher': 0, 'afghan_hound': 1, 'african_hunting_dog': 2}batch_size = 128
# 创建数据加载器
# 通常用于训练过程中按批次提供数据,具有更高效的数据加载和处理能力。
train_iter, train_valid_iter = [torch.utils.data.DataLoader(dataset, batch_size, shuffle=True, drop_last=True) for dataset in (train_dataset, train_valid_dataset)]valid_iter = torch.utils.data.DataLoader(valid_dataset, batch_size, shuffle=False,drop_last=True)test_iter = torch.utils.data.DataLoader(test_dataset, batch_size, shuffle=False,drop_last=False)
4.预训练模型resnet34
# 用于创建和配置训练模型
def get_net(devices):# 创建一个空的 nn.Sequential 容器finetune_net = nn.Sequential()# 加载预训练的 ResNet-34 模型,并将其特征层(features)部分添加到 finetune_net 中finetune_net.features = torchvision.models.resnet34(pretrained=True)# 定义一个新的输出网络finetune_net.output_new = nn.Sequential(nn.Linear(1000, 256),nn.ReLU(),nn.Linear(256, 120))# 将模型参数分配到指定的设备(如 GPU 或 CPU)finetune_net = finetune_net.to(devices[0])# 冻结预训练的特征层参数,以避免在训练过程中更新这些参数for param in finetune_net.features.parameters():param.requires_grad = False# 返回配置好的模型return finetune_net
5.模型训练
def train_batch(net, X, y, loss, trainer, devices):"""使用多GPU训练一个小批量数据。参数:net: 神经网络模型。X: 输入数据,张量或张量列表。y: 标签数据。loss: 损失函数。trainer: 优化器。devices: GPU设备列表。返回:train_loss_sum: 当前批次的训练损失和。train_acc_sum: 当前批次的训练准确度和。"""# 如果输入数据X是列表类型if isinstance(X, list):# 将列表中的每个张量移动到第一个GPU设备X = [x.to(devices[0]) for x in X]else:X = X.to(devices[0])# 如果X不是列表,直接将X移动到第一个GPU设备y = y.to(devices[0])# 将标签数据y移动到第一个GPU设备net.train() # 设置网络为训练模式trainer.zero_grad()# 梯度清零pred = net(X) # 前向传播,计算预测值l = loss(pred, y) # 计算损失l.sum().backward()# 反向传播,计算梯度trainer.step() # 更新模型参数train_loss_sum = l.sum()# 计算当前批次的总损失train_acc_sum = d2l.accuracy(pred, y)# 计算当前批次的总准确度return train_loss_sum, train_acc_sum# 返回训练损失和与准确度和def train(net, train_iter, valid_iter, num_epochs, lr, wd, devices, lr_period, lr_decay):trainer = torch.optim.SGD(# net.parameters():返回模型 net 中所有参数。# if param.requires_grad:仅选择那些 requires_grad 为 True 的参数。# 这些参数是需要进行梯度更新的(即未冻结的参数)(param for param in net.parameters()if param.requires_grad), # momentum用于加速 SGD 的收敛速度,通过在更新参数时考虑之前的更新方向,减少震荡# weight_decay权重衰减用于防止过拟合lr=lr,momentum=0.9, weight_decay=wd)# trainer = torch.optim.Adam(net.parameters(), lr=lr,weight_decay=wd)scheduler = torch.optim.lr_scheduler.StepLR(trainer, lr_period, lr_decay)loss = nn.CrossEntropyLoss(reduction="none")num_batches, timer = len(train_iter), d2l.Timer()legend = ['train loss', 'train acc']if valid_iter is not None:legend.append('valid acc')animator = lp.Animator(xlabel='epoch', xlim=[1, num_epochs],legend=legend)net = nn.DataParallel(net, device_ids=devices).to(devices[0])for epoch in range(num_epochs):net.train()metric = lp.Accumulator(3)for i, (features, labels) in enumerate(train_iter):timer.start()l, acc = train_batch(net, features, labels,loss, trainer, devices)metric.add(l, acc, labels.shape[0])timer.stop()# train_l = metric[0] / metric[2] # 计算训练损失# train_acc = metric[1] / metric[2] # 计算训练准确率if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:animator.add(epoch + (i + 1) / num_batches,(metric[0] / metric[2], metric[1] / metric[2],None))if valid_iter is not None:valid_acc = d2l.evaluate_accuracy_gpu(net, valid_iter)animator.add(epoch + 1, (None, None, valid_acc))scheduler.step()# print(f'loss {train_l:.3f}, train acc {train_acc:.3f}, '#       f'valid_acc {valid_acc:.3f}')measures = (f'train loss {metric[0] / metric[2]:.3f}, 'f'train acc {metric[1] / metric[2]:.3f}')if valid_iter is not None:measures += f', valid acc {valid_acc:.3f}'print(measures + f'\n{metric[2] * num_epochs / timer.sum():.1f}'f' examples/sec on {str(devices)}')
6.模型预测
def predict(file_path_module):# 预测net = get_net(d2l.try_all_gpus())net.load_state_dict(torch.load(file_path_module + 'imageNet_Dogs.params'))# 初始化一个空列表preds用于存储预测结果preds = []# 遍历测试集中的每一个数据和标签for data, label in test_iter:# 使用神经网络(net)对数据进行预测,并使用softmax函数将输出转化为概率分布output = torch.nn.functional.softmax(net(data.to(devices[0])), dim=1)# 将预测结果从GPU中取出,转换为NumPy数组后,添加到preds列表中preds.extend(output.cpu().detach().numpy())# 获取测试数据文件夹中所有文件的id,并按字典顺序排序ids = sorted(os.listdir(os.path.join(file_path, 'train_valid_test', 'test', 'unknown')))# 打开一个新的CSV文件submission.csv用于写入预测结果with open(file_path + 'submission.csv', 'w') as f:# 写入CSV文件的表头,包含'id'和所有类别标签f.write('id,' + ','.join(train_valid_dataset.classes) + '\n')# 遍历文件id和对应的预测结果for i, output in zip(ids, preds):# 写入每个文件的id和对应的预测概率f.write(i.split('.')[0] + ',' + ','.join([str(num) for num in output]) + '\n')
7.定义超参数并保存训练参数
# 定义模型
devices, num_epochs, lr, wd = d2l.try_all_gpus(), 20, 1e-4, 1e-4
lr_period, lr_decay, net = 10, 0.1, get_net(devices)
train(net, train_iter, valid_iter, num_epochs, lr, wd, devices, lr_period, lr_decay)
# num_epochs, lr, wd, lr_period, lr_decay = 20, 1e-4, 1e-4, 4, 0.9 (简略数据集)
# train loss 0.750, train acc 0.814, valid acc 0.646
# 647.4 examples/sec on [device(type='cuda', index=0)]# num_epochs, lr, wd, lr_period, lr_decay = 20, 1e-4, 1e-4, 10, 0.1 (原数据集)
# train loss 0.863, train acc 0.759, valid acc 0.844
# 830.8 examples/sec on [device(type='cuda', index=0)]
plt.show()net = get_net(devices)
train(net, train_valid_iter, None, num_epochs, lr, wd, devices, lr_period,lr_decay)
# num_epochs, lr, wd, lr_period, lr_decay = 20, 1e-4, 1e-4, 4, 0.9 (简略数据集)
# train loss 0.721, train acc 0.815
# 704.9 examples/sec on [device(type='cuda', index=0)]# num_epochs, lr, wd, lr_period, lr_decay = 20, 1e-4, 1e-4, 10, 0.1 (原数据集)
# train loss 0.865, train acc 0.758
# 845.4 examples/sec on [device(type='cuda', index=0)]plt.show()
# 保存模型参数
file_path_module = '../limuPytorch/module/'
torch.save(net.state_dict(), file_path_module + 'imageNet_Dogs.params')

简略数据集:
在这里插入图片描述
在这里插入图片描述

原始数据集:
在这里插入图片描述
在这里插入图片描述

8.预测提交kaggle
predict(file_path_module)

在这里插入图片描述

相关文章:

动手学深度学习(Pytorch版)代码实践 -计算机视觉-39实战Kaggle比赛:狗的品种识别(ImageNet Dogs)

39实战Kaggle比赛&#xff1a;狗的品种识别&#xff08;ImageNet Dogs&#xff09; 比赛链接&#xff1a;Dog Breed Identification | Kaggle 1.导入包 import torch from torch import nn import collections import math import os import shutil import torchvision from…...

在Linux系统中挂载硬盘

目录 1. 查看硬盘信息 2. 分区硬盘&#xff08;如果硬盘没有分区&#xff09; 3. 格式化分区 4. 创建挂载点 5. 挂载分区 6. 验证挂载 7.设置开机自动挂载&#xff08;可选&#xff09; 1. 查看硬盘信息 lsblk 这个命令会列出所有的块设备&#xff0c;包括硬盘 2.…...

安卓短视频去水印v1.7 简洁好用

各大平台视频无水印提取&#xff0c;登录即永久会员&#xff01; 无水印提取&#xff0c;图片无水印提取 视频旋转&#xff0c;倒放&#xff0c;转gif等功能。 链接&#xff1a;https://pan.baidu.com/s/1UgO4V16ZM34tG5uDog74Pg?pwdcn0u 提取码&#xff1a;cn0u...

【征服数据结构】:期末通关秘籍

【征服数据结构】&#xff1a;期末通关秘籍 &#x1f498; 数据结构的基本概念&#x1f608; 数据结构的基本概念&#x1f608; 逻辑结构和存储结构的区别和联系&#x1f608; 算法及其特性&#x1f608; 简答题 &#x1f498; 线性表&#xff08;链表、单链表&#xff09;&…...

GIT 基于master分支创建hotfix分支的操作

基于master分支创建hotfix分支的操作通常遵循以下步骤&#xff1a; 切换到master分支&#xff1a; 首先&#xff0c;确保你的工作区是最新的&#xff0c;并且你在master分支上。如果不在master分支&#xff0c;你需要先切换过去。 Bash git checkout master 拉取最新的master…...

Vue-CLI脚手架与node.js安装

前言&#xff1a; Vue-CLI 是一个基于 Vue.js 快速开发单页应用的官方脚手架工具&#xff0c;能够帮助开发者快速搭建前端项目的基础结构。在开始使用 Vue-CLI 前&#xff0c;首先需要安装 Node.js&#xff0c;因为 Vue-CLI 是基于 Node.js 构建的。 Node.js 是一个基于 Chrom…...

自适应站长跑路单页网站源码

跑路单页HTML源码自行修改文字就行了,上传到服务器里面运行即可&#xff0c;本地运行的话音乐会加载不出来&#xff0c;涉及到跨域问题 自适应站长跑路单页网站源码...

Java基础(判断和循环)

一、流程控制语句-顺序结构 顺序结构语句是Java程序默认的执行流程&#xff0c;按照代码的先后顺序&#xff0c;从上到下依次执行。 二、流程控制语句-分支结构&#xff08;分支结构包括if、switch) if语句&#xff1a;在程序中用来进行判断 1、If语句的第一种格式&#xf…...

51单片机第12步_使用stdio.h库函数仿真串口通讯

本章介绍如何使用stdio.h库函数仿真串口通讯&#xff0c;学会使用view下面的“serial window #1”,实现模拟串口通讯。 Keil C51中有一些关键字&#xff0c;需要牢记&#xff1a; interrupt0:指定当前函数为外部中断0&#xff1b; interrupt1:指定当前函数为定时器0中断&…...

simulink-esp32开发foc电机

1. ESP32 和 STM32 都是流行的微控制器&#xff0c;但它们的刷写方式有所不同。 ESP32 ESP32 可以通过以下几种方式刷写&#xff1a; USB 下载模式&#xff1a;这是最常见的一种刷写方式。将 ESP32 连接到计算机的 USB 端口&#xff0c;然后将 ESP32 置于下载模式。可以使用…...

Python教程--基本技能

】TOC 5.1 解析命令行参数 在Python中&#xff0c;解析命令行参数是一项常见的任务&#xff0c;尤其是在开发命令行工具或脚本时。Python标准库提供了argparse模块&#xff0c;它可以帮助你轻松地编写用户友好的命令行接口。下面是使用argparse模块解析命令行参数的基本步骤&…...

干货分享:Spring中经常使用的工具类(提示开发效率)

环境&#xff1a;Spring5.3…30 1、资源工具类 ResourceUtils将资源位置解析为文件系统中的文件的实用方法。 读取classpath下文件 File file ResourceUtils.getFile(ResourceUtils.CLASSPATH_URL_PREFIX "logback.xml") ; // ...读取文件系统文件 file Resou…...

一文讲懂npm link

前言 在本地开发npm模块的时候&#xff0c;我们可以使用npm link命令&#xff0c;将npm 模块链接到对应的运行项目中去&#xff0c;方便地对模块进行调试和测试 用法 包链接是一个两步过程&#xff1a; 1.为依赖项创建全局软链npm link。一个符号链接&#xff0c;简称软链&a…...

观成科技:证券行业加密业务安全风险监测与防御技术研究

摘要&#xff1a;解决证券⾏业加密流量威胁问题、加密流量中的应⽤⻛险问题&#xff0c;对若⼲证券⾏业的实际流量内容进⾏调研分析&#xff0c; 分析了证券⾏业加密流量⾯临的合规性⻛险和加密协议及证书本⾝存在的⻛险、以及可能存在的外部加密流量威 胁&#xff0c;并提出防…...

使用Swoole开发高性能的Web爬虫

使用swoole开发高性能的web爬虫 Web爬虫是一种自动化获取网络数据的工具&#xff0c;它可以在互联网上收集数据&#xff0c;并且可以被应用于各种不同的领域&#xff0c;如搜索引擎、数据分析、竞争对手分析等。随着互联网规模和数据量的快速增长&#xff0c;如何开发一个高性…...

【Elasticsearch】Elasticsearch索引创建与管理详解

文章目录 &#x1f4d1;引言一、Elasticsearch 索引的基础概念二、创建索引2.1 使用默认设置创建索引2.2 自定义设置创建索引2.3 创建索引并设置映射 三、索引模板3.1 创建索引模板3.2 使用索引模板创建索引 四、管理索引4.1 查看索引4.2 更新索引设置4.3 删除索引 五、索引别名…...

[数据集][目标检测]棉花检测数据集VOC+YOLO格式389张1类别

数据集格式&#xff1a;Pascal VOC格式YOLO格式(不包含分割路径的txt文件&#xff0c;仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数)&#xff1a;389 标注数量(xml文件个数)&#xff1a;389 标注数量(txt文件个数)&#xff1a;389 标注类别…...

使用Java实现实时数据处理系统

使用Java实现实时数据处理系统 大家好&#xff0c;我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编&#xff0c;也是冬天不穿秋裤&#xff0c;天冷也要风度的程序猿&#xff01; 引言 在当今信息爆炸的时代&#xff0c;实时数据处理系统变得越来越重要。无论…...

整合web-socket的常见bug

整合文章连接 此文是记录我上网查找整合方案时候踩的坑,特别是注册失败的问题,比如还有什么去掉Compoent就可以,但是这样这个端点就失效了 特别是报错: at org.springframework.web.socket.server.standard.ServerEndpointExporter.registerEndpoint(ServerEndpointExporter.…...

Python 中字符串的常用操作都有哪些?

在 Python 中字符串的表达方式有四种 一对单引号 一对双引号 一对三个单引号 一对三个双引号 a ‘abc’ b “abc” c ‘’‘abc’’’ d “”“abc”"" print(type(a)) # <class ‘str’> print(type(b)) # <class ‘str’> print(type©) # <…...

FFmpeg 硬件编码加速文档介绍

介绍 硬件访问:许多平台提供了对专用硬件的访问,这些硬件可以用于执行解码、编码或过滤等视频相关操作。 性能与资源使用:使用硬件可以加快某些操作的速度或减少其他资源(特别是CPU)的使用,但可能会产生不同的结果或质量较低,或带来在使用纯软件时不存在的额外限制。 硬…...

【Matlab函数分析】imread从图形文件读取图像

&#x1f517; 运行环境&#xff1a;Matlab &#x1f6a9; 撰写作者&#xff1a;左手の明天 &#x1f947; 精选专栏&#xff1a;《python》 &#x1f525; 推荐专栏&#xff1a;《算法研究》 #### 防伪水印——左手の明天 #### &#x1f497; 大家好&#x1f917;&#x1f91…...

零基础光速入门AI绘画,SD保姆攻略

前言 大家好&#xff0c;我是AI绘画咪酱。一名AIGC狂热爱好者&#xff0c;目前正在AI绘画领域进行深入的探索。 我花了一个月时间把SD研究了一遍&#xff0c;秉持着用有趣、易懂的文字让小白也可以零基础光速使用SD&#xff08;stable diffusion&#xff09;入门AI绘画&#…...

详细配置SQL Server的链接服务器(图文操作Mysql数据库)

目录 前言1. MySQL ODBC 驱动2. 配置 SQL Server 链接服务器3. 彩蛋前言 此处配置以及安装没有什么理论知识 所以直奔主题,跟着以下步骤配置安装即可 需求:准备在10.197.0.110中链接外部的10.197.0.96的mysql数据源 已默认在10.197.0.96中安装了MySQL数据库并且知道其连接信…...

DDD学习笔记五

模型引力场&#xff1a;聚合 强作用力体现&#xff1a; 某个领域模型是另一些模型存在的前提&#xff0c;没有前者&#xff0c;后者就失去了生存的意义。 一组领域模型之间存在关联的领域逻辑&#xff0c;任何时候都不能违反。 一组领域模型必须以一个完整的、一致的状态呈现给…...

CAN报文的发送类型-OnChange、OnWrite、IfActive、Repetition

CAN报文的发送类型分为基本发送类型和混合发送类型两大类 CAN基本发送类型包括Cyclic周期发送、OnChange变化时发送、OnWrite写入时发送和IfActive有效时发送。基本发送类型中的Cyclic称为周期型,而其他3个类型称为事件型(Event)。发送次数是通过定义Repetition重复次数来实…...

神经网络在机器学习中的应用:手写数字识别

机器学习是人工智能的一个分支&#xff0c;它使计算机能够从数据中学习并做出决策或预测。神经网络作为机器学习的核心算法之一&#xff0c;因其强大的非线性拟合能力而广泛应用于各种领域&#xff0c;包括图像识别、自然语言处理和游戏等。本文将介绍如何使用神经网络对MNIST数…...

QT拖放事件之四:自定义拖放操作-利用QDrag来拖动完成数据的传输-案例demo

1、核心代码 #include "Widget.h" #include "ui_Widget.h" #include "MyButton.h"Widget::Widget(QWidget *parent): QWidget...

Spring Boot应用的部署与扩展

Spring Boot应用的部署与扩展 大家好&#xff0c;我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编&#xff0c;也是冬天不穿秋裤&#xff0c;天冷也要风度的程序猿&#xff01; 引言 Spring Boot作为现代化Java应用的首选框架之一&#xff0c;以其简化的配置…...

Spring底层原理之bean的加载方式八 BeanDefinitionRegistryPostProcessor注解

BeanDefinitionRegistryPostProcessor注解 这种方式和第七种比较像 要实现两个方法 第一个方法是实现工厂 第二个方法叫后处理bean注册 package com.bigdata1421.bean;import org.springframework.beans.BeansException; import org.springframework.beans.factory.config.…...

大数据面试题之Spark(5)

Spark SQL与DataFrame的使用? Sparksql自定义函数?怎么创建DataFrame? HashPartitioner和RangePartitioner的实现 Spark的水塘抽样 DAGScheduler、TaskScheduler、SchedulerBackend实现原理 介绍下Sparkclient提交application后&#xff0c;接下来的流程? Spark的几种…...

springboot笔记示例六:fastjson2集成

springboot笔记示例六&#xff1a;fastjson2集成 本文md下载 https://download.csdn.net/download/a254939392/89491102本文md文档下载地址 #springboot json官方说明 https://docs.spring.io/spring-boot/docs/2.1.6.RELEASE/reference/html/boot-features-json.htmlsprin…...

VLOOKUP函数在表格的简单运用-两个表匹配

1.什么是VLOOKUP&#xff1f; VLOOKUP是Excel中的一个内置函数&#xff0c;主要用于在区域或表格的首列查找指定的值&#xff0c;并返回该行中其他列的值。它特别适用于跨表格数据匹配 2.函数运用 2.1.这边两个表取名a表和b表&#xff0c;做为我们的实例表。 表格a包含&…...

http.cookiejar.LoadError: Cookies file must be Netscape formatted,not JSON.解决方案

大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的…...

逻辑操作符

目录 && --- 逻辑与操作符 || --- 逻辑或操作符 && --- 逻辑与操作符 逻辑与操作符有并且的意思&#xff0c;一般用于判断语句中 逻辑与操作符运行规则是都要为真&#xff0c;才会继续执行或计算 360笔试题&#xff1a; 有关前置(--)&#xff0c;后置(-…...

Java调用第三方接口的秘籍:技巧、案例与最佳实践

Java调用第三方接口的秘籍&#xff1a;技巧、案例与最佳实践 在Java开发中&#xff0c;调用第三方接口是一项常见的任务。无论是与外部系统交互、集成其他服务&#xff0c;还是调用远程API获取数据&#xff0c;掌握有效的第三方接口调用技巧都是至关重要的。本文将深入剖析Jav…...

【机器学习】机器学习重要方法——深度学习:理论、算法与实践

文章目录 引言第一章 深度学习的基本概念1.1 什么是深度学习1.2 深度学习的历史发展1.3 深度学习的关键组成部分 第二章 深度学习的核心算法2.1 反向传播算法2.2 卷积神经网络&#xff08;CNN&#xff09;2.3 循环神经网络&#xff08;RNN&#xff09; 第三章 深度学习的应用实…...

计网之IP

IP IP基本认识 不使用NAT时&#xff0c;源IP地址和目的IP地址不变&#xff0c;只要源MAC和目的MAC地址在变化 IP地址 D类是组播地址&#xff0c;E类是保留地址 无分类地址CIDR 解决直接分类的B类65536太多&#xff0c;C类256太少a.b.c.d/x的前x位属于网路号&#xff0c;剩…...

mybatis延迟加载

mybatis延迟加载 1、延迟加载概述 应用场景 ​ 如果查询订单并且关联查询用户信息。如果先查询订单信息即可满足要求&#xff0c;当我们需要查询用户信息时再查询用户信息。把对用户信息的按需去查询就是延迟加载。 延迟加载的好处 ​ 先从单表查询、需要时再从关联表去关联查…...

危险!属性拷贝工具的坑!

1. 背景​ 之前在专栏中讲过“不推荐使用属性拷贝工具”&#xff0c;推荐直接定义转换类和方法使用 IDEA 插件自动填充 get / set 函数。 不推荐的主要理由是&#xff1a; 有些属性拷贝工具性能有点差有些属性拷贝工具有“BUG”使用属性拷贝工具容易存在一些隐患&#xff08…...

qt实现打开pdf(阅读器)功能用什么库比较合适

关于这个问题&#xff0c;网上搜一下&#xff0c;可以看到非常多的相关博客和例子&#xff0c;可以先看看这个总结性的博客&#xff08;https://zhuanlan.zhihu.com/p/480973072&#xff09; 该博客讲得比较清楚了&#xff0c;这里我再补充一下吧&#xff08;qt官方也给出了一些…...

在node.js环境中使用web服务器http-server运行html静态文件

http-server http-server是一个超轻量级web服务器&#xff0c;它可以将任何一个文件夹当作服务器的目录供自己使用。 当我们想要在服务器运行一些代码&#xff0c;但是又不会配置服务器的时候&#xff0c;就可以使用http-server就可以搞定了。 使用方法 因为http-server需要…...

前端学习篇一(HTML)

Introduction ##文章内容&#xff1a;使用HBuilder制作一个简单的HTML5网页以此达到学习HTML5 的目的 ##编写内容&#xff1a;1.HTML实现平台 2.HTML简介 3.HTML语言解析 ##编写人&#xff1a;贾雯爽 ##最后更新时间&#xff1a;2024/07/01 Overview Details 一、HTML简介…...

VUE笔记

框架&#xff1a; 框架结构&#xff0c;把很多基础功能已经实现&#xff08;封装了&#xff09;。 框架&#xff1a;在基础语言之上&#xff0c;对各种基础功能进行封装&#xff0c;方便开发者&#xff0c;提高开发效率。 举例&#xff1a;操作页面 现在&#xff1a;点击按…...

Datawhale机器学习day-1

赛题 在当今科技日新月异的时代&#xff0c;人工智能&#xff08;AI&#xff09;技术正以前所未有的深度和广度渗透到科研领域&#xff0c;特别是在化学及药物研发中展现出了巨大潜力。精准预测分子性质有助于高效筛选出具有优异性能的候选药物。以PROTACs为例&#xff0c;它是…...

业务模型扩展字段存储

构建业务模型时&#xff0c;通常模型会设置扩展信息&#xff0c;存储上一般使用JSON格式存储到db中。JSON虽然有较好的扩展性&#xff0c;但并没有结构化存储的类型和非空等约束&#xff0c;且强依赖代码中写入/读取时进行序列化/反序列化操作&#xff0c; 当扩展信息结构简单且…...

50+k8s常用命令,助你成为k8s大牛!

Kubernetes是一个强大的容器编排平台&#xff0c;不管是运维、开发还是测试或多或少都会接触到&#xff0c;熟练的掌握k8s可大大提高工作效率和强化自身技能。 集群管理 1. 查看集群节点状态: kubectl get nodes2. 查看集群资源使用情况: kubectl top nodes3. 查看集群信息…...

002-基于Sklearn的机器学习入门:回归分析(上)

本节及后续章节将介绍机器学习中的几种经典回归算法&#xff0c;所选方法都在Sklearn库中聚类模块有具体实现。本节为上篇&#xff0c;将介绍基础的线性回归方法&#xff0c;包括线性回归、逻辑回归、多项式回归和岭回归等。 2.1 回归分析概述 回归&#xff08;Regression&…...

python实现网页自动化(自动登录需要验证的网页)

引言: python作为实现网页自动化的一个重要工具,其强大的各种封装的库使得程序运行更加简洁,只需要下载相应的库,然后调用库中的函数就可以简便的实现我们想要的网页相关操作。 正文: 我的前几篇文章写了关于初学爬虫中比较容易上手的功能,例如爬取静态网页的数据、动…...

ctfshow-web入门-命令执行(web71-web74)

目录 1、web71 2、web72 3、web73 4、web74 1、web71 像上一题那样扫描但是输出全是问号 查看提示&#xff1a;我们可以结合 exit() 函数执行php代码让后面的匹配缓冲区不执行直接退出。 payload&#xff1a; cvar_export(scandir(/));exit(); 同理读取 flag.txt cinclud…...

不是大厂云用不起,而是五洛云更有性价比

明月代维的一个客户的大厂云境外云服务器再有几天就到期了&#xff0c;续费提醒那是提前一周准时到来&#xff0c;但是看到客户发来的续费价格截图&#xff0c;我是真的没忍住。这不就是在杀熟吗&#xff1f;就这配置续费竟然如此昂贵&#xff1f;说实话这个客户的服务器代维是…...

8625 火车上的无奈

这个问题可以通过计数来解决。对于每个case&#xff0c;我们可以计算出F和M的数量。如果F和M的数量相等&#xff0c;那么就可以形成一个环&#xff0c;否则就不能。 以下是一个C的解决方案&#xff1a; #include <iostream> #include <string>using namespace st…...

Python基于PyQt5和卷积神经网络分类模型(CNN分类算法)实现时装类别识别系统GUI界面项目实战

说明&#xff1a;这是一个机器学习实战项目&#xff08;附带数据代码文档视频讲解&#xff09;&#xff0c;如需数据代码文档视频讲解可以直接到文章最后获取。 1.项目背景 随着深度学习技术的发展&#xff0c;计算机视觉领域取得了显著的进步&#xff0c;特别是在图像分类、目…...

ai智能电销机器人系统稳不稳,效果好不好

智能ai电销机器人好不好用&#xff1f;智能AI电销机器人系统现如今已经不是一个新名词了&#xff0c;在人工智能这个新趋势的风潮下&#xff0c;一些企业已经在电销部门引入了智能AI机器人系统。我一起来看看ai智能电销机器人系统稳不稳。 1.数据有效 通常我们需要收集潜在用…...

2.2.3 C#中显示控件BDPictureBox 的实现----控件实现

2.2.3 C#中显示控件BDPictureBox 的实现----控件实现 1 界面控件布局 2图片内存Mat类说明 原始图片&#xff1a;m_raw_mat ,Display_Mat()调用时更新或者InitDisplay_Mat时更新局部放大显示图片&#xff1a;m_extract_zoom_mat&#xff0c;更新scale和scroll信息后更新overla…...

ArrayList底层原理

ArrayList扩容方法&#xff08;两种&#xff09; ArrayList的扩容机制 当添加元素为一个一个添加时&#xff0c;首次添加第一个元素&#xff0c;会创建一个长度为10的数组&#xff0c;存满时会扩容1.5倍&#xff0c;新建一个长度为15的数组&#xff0c;然后把之前的数据放进去。…...

再破记录!东风风神L7无补能2162.8公里往返穿越羌塘

想象一下驰骋在高速公路上,周围是辽阔的羌塘无人区,一望无际的荒野,野生动物自由穿梭,神秘而充满挑战。这条路就是传说中的216国道,无疑是最无人居住的地区道路。从新疆民丰到西藏改则,800公里无人区没有加油站,这是对车辆极限性能和团队冒险精神的双重考验!最近,在这…...

做场外个股期权怎么询价

做场外个股期权怎么询价&#xff1f;没有具体的哪家做市商是询价是最低的&#xff0c;个人投资者需要通过机构通道方询价进行对比&#xff0c;各券商的报价由询价机构方提供给到投资者&#xff0c;可以参考不同券商的报价进行比对&#xff0c;再决定是否进行投资。本文来自&…...

MFC CList<CRect, CRect> m_listRect;的用法

CList<CRect, CRect&> 是 MFC&#xff08;Microsoft Foundation Classes&#xff09;中定义的一个双向链表模板类&#xff0c;用于存储 CRect 对象。在使用 CList 时&#xff0c;你可以执行多种操作&#xff0c;比如添加、移除、查找和遍历元素。以下是一些常见的用法…...

【C++】模拟实现string类

&#x1f984;个人主页:修修修也 &#x1f38f;所属专栏:C ⚙️操作环境:Visual Studio 2022 目录 一.了解项目功能 二.逐步实现项目功能模块及其逻辑详解 &#x1f38f;构建成员变量 &#x1f38f;实现string类默认成员函数 &#x1f4cc;构造函数 &#x1f4cc;析构函数…...

Spring Boot集成rss快速入门demo

1.什么是rss&#xff1f; RSS 的全称是「简易内容聚合」&#xff08;Really Simple Syndication&#xff09;&#xff0c;是一个能让你在一个地方订阅各种感兴趣网站的工具。 一个网站支持 RSS&#xff0c;就意味着每当它新发布一篇新文章&#xff0c;就会往一个位于特定网址的…...

在Go语言中如何实现变参函数和函数选项模式

在Go语言编程中,我们经常会遇到需要给函数传递可选参数的情况。传统的做法是定义一个结构体,将所有可选参数作为结构体字段,然后在调用函数时创建该结构体的实例并传递。这种方式虽然可行,但是当可选参数较多时,创建结构体实例的代码就会变得冗长และ不太直观。 Go语言的一个…...