当前位置: 首页 > news >正文

【机器学习】机器学习重要方法——深度学习:理论、算法与实践

文章目录

      • 引言
      • 第一章 深度学习的基本概念
        • 1.1 什么是深度学习
        • 1.2 深度学习的历史发展
        • 1.3 深度学习的关键组成部分
      • 第二章 深度学习的核心算法
        • 2.1 反向传播算法
        • 2.2 卷积神经网络(CNN)
        • 2.3 循环神经网络(RNN)
      • 第三章 深度学习的应用实例
        • 3.1 图像识别
        • 3.2 自然语言处理
        • 3.3 语音识别
      • 第四章 深度学习的未来发展与挑战
        • 4.1 计算资源与效率
        • 4.2 模型解释性与可解释性
        • 4.3 小样本学习与迁移学习
        • 4.4 多模态学习与融合
      • 结论

引言

深度学习(Deep Learning)作为机器学习的一个重要分支,通过构建和训练多层神经网络,自动提取和学习数据的多层次特征,近年来在多个领域取得了突破性的进展。本文将深入探讨深度学习的基本原理、核心算法及其在实际中的应用,并提供代码示例以帮助读者更好地理解和掌握这一技术。
在这里插入图片描述

第一章 深度学习的基本概念

1.1 什么是深度学习

深度学习是一类通过多层神经网络进行表征学习(representation learning)的机器学习方法。其核心思想是通过构建深层神经网络,自动从数据中提取和学习多层次的特征表示,从而实现更高层次的抽象和数据理解。

1.2 深度学习的历史发展

深度学习的发展经历了多个重要阶段:

  • 早期阶段:神经网络的基础理论和感知机模型的提出。
  • 神经网络的复兴:反向传播算法的提出和多层神经网络的广泛应用。
  • 深度学习的兴起:卷积神经网络(CNN)在图像识别中的成功应用,以及深度学习在自然语言处理和语音识别等领域的突破。
1.3 深度学习的关键组成部分

深度学习模型通常包括以下几个关键组成部分:

  • 输入层(Input Layer):接收原始数据输入。
  • 隐藏层(Hidden Layers):通过多个隐藏层进行特征提取和表征学习。
  • 输出层(Output Layer):输出预测结果或分类标签。
  • 激活函数(Activation Function):对隐藏层的线性变换进行非线性映射。
  • 损失函数(Loss Function):衡量模型预测结果与真实标签之间的差异。
  • 优化算法(Optimization Algorithm):通过梯度下降等方法优化模型参数。

第二章 深度学习的核心算法

2.1 反向传播算法

反向传播算法是训练多层神经网络的关键算法,通过计算损失函数对网络参数的梯度,逐层反向传播误差并更新参数,从而最小化损失函数。

import numpy as np# 定义激活函数和其导数
def sigmoid(x):return 1 / (1 + np.exp(-x))def sigmoid_derivative(x):return x * (1 - x)# 初始化数据和参数
X = np.array([[0,0],[0,1],[1,0],[1,1]])
y = np.array([[0],[1],[1],[0]])
input_layer_neurons = X.shape[1]
hidden_layer_neurons = 2
output_neurons = 1
learning_rate = 0.1# 初始化权重和偏置
wh = np.random.uniform(size=(input_layer_neurons, hidden_layer_neurons))
bh = np.random.uniform(size=(1, hidden_layer_neurons))
wout = np.random.uniform(size=(hidden_layer_neurons, output_neurons))
bout = np.random.uniform(size=(1, output_neurons))# 训练神经网络
for epoch in range(10000):# 前向传播hidden_layer_input = np.dot(X, wh) + bhhidden_layer_activation = sigmoid(hidden_layer_input)output_layer_input = np.dot(hidden_layer_activation, wout) + boutoutput = sigmoid(output_layer_input)# 计算损失error = y - output# 反向传播d_output = error * sigmoid_derivative(output)error_hidden_layer = d_output.dot(wout.T)d_hidden_layer = error_hidden_layer * sigmoid_derivative(hidden_layer_activation)# 更新权重和偏置wout += hidden_layer_activation.T.dot(d_output) * learning_ratebout += np.sum(d_output, axis=0, keepdims=True) * learning_ratewh += X.T.dot(d_hidden_layer) * learning_ratebh += np.sum(d_hidden_layer, axis=0, keepdims=True) * learning_rateprint(f'训练后的输出:\n{output}')
2.2 卷积神经网络(CNN)

卷积神经网络(Convolutional Neural Network, CNN)是一类专门用于处理具有网格状结构数据(如图像)的深度学习模型。CNN通过卷积层和池化层提取图像的局部特征,并通过全连接层进行分类或回归。

import tensorflow as tf
from tensorflow.keras import layers, models# 构建卷积神经网络
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))# 编译模型
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])# 加载MNIST数据集
mnist = tf.keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()
train_images = train_images.reshape((60000, 28, 28, 1)).astype('float32') / 255
test_images = test_images.reshape((10000, 28, 28, 1)).astype('float32') / 255# 训练模型
history = model.fit(train_images, train_labels, epochs=5, validation_data=(test_images, test_labels))# 评估模型
test_loss, test_acc = model.evaluate(test_images, test_labels)
print(f'测试准确率: {test_acc}')
2.3 循环神经网络(RNN)

循环神经网络(Recurrent Neural Network, RNN)是一类专门用于处理序列数据的深度学习模型。RNN通过循环连接前一时刻的隐藏状态和当前输入,实现对序列数据的建模。LSTM(Long Short-Term Memory)和GRU(Gated Recurrent Unit)是两种常见的RNN变体,解决了标准RNN在长序列数据中出现的梯度消失问题。

import numpy as np
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense, Embedding# 生成示例数据
X = np.random.random((1000, 10, 1))
y = np.random.randint(2, size=(1000, 1))# 构建LSTM模型
model = Sequential()
model.add(LSTM(50, input_shape=(10, 1)))
model.add(Dense(1, activation='sigmoid'))# 编译模型
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])# 训练模型
model.fit(X, y, epochs=10, batch_size=32)# 生成测试数据
X_test = np.random.random((100, 10, 1))
y_test = np.random.randint(2, size=(100, 1))# 评估模型
test_loss, test_acc = model.evaluate(X_test, y_test)
print(f'测试准确率: {test_acc}')

在这里插入图片描述

第三章 深度学习的应用实例

3.1 图像识别

在图像识别任务中,深度学习通过卷积神经网络(CNN)显著提高了分类精度。以下是一个在CIFAR-10数据集上使用CNN进行图像分类的示例。

from tensorflow.keras.datasets import cifar10# 加载数据集
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0# 构建卷积神经网络
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))# 编译模型
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])# 训练模型
history = model.fit(x_train, y_train, epochs=10, validation_data=(x_test, y_test))# 评估模型
test_loss, test_acc = model.evaluate(x_test, y_test)
print(f'测试准确率: {test_acc}')
3.2 自然语言处理

在自然语言处理任务中,深度学习通过循环神经网络(RNN)和注意力机制(Attention Mechanism)实现了文本分类、机器翻译和情感分析等应用。以下是一个在IMDB情感分析数据集上使用LSTM进行文本分类的示例。

from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences# 加载数据集
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.imdb.load_data(num_words=10000)# 数据预处理
maxlen = 100
x_train = pad_sequences(x_train, maxlen=maxlen)
x_test = pad_sequences(x_test, maxlen=maxlen)# 构建LSTM模型
model = Sequential()
model.add(Embedding(10000, 128, input_length=maxlen))
model.add(LSTM(64))
model.add(Dense(1, activation='sigmoid'))# 编译模型
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])# 训练模型
model.fit(x_train, y_train, epochs=10, validation_data=(x_test, y_test), verbose=2)# 评估模型
test_loss, test_acc = model.evaluate(x_test, y_test, verbose=2)
print(f'测试准确率: {test_acc}')
3.3 语音识别

在语音识别任务中,深度学习通过卷积神经网络(CNN)和循环神经网络(RNN)的结合,实现了对语音信号的准确识别。以下是一个在语音命令数据集上使用深度学习进行语音识别的示例。

import tensorflow as tf
from tensorflow.keras import layers, models
import numpy as np# 加载数据集
(train_audio, train_labels), (test_audio, test_labels) = tf.keras.datasets.speech_commands.load_data()# 数据预处理
train_audio = train_audio / np.max(train_audio)
test_audio = test_audio / np.max(test_audio)
train_labels = tf.keras.utils.to_categorical(train_labels, num_classes=12)
test_labels = tf.keras.utils.to_categorical(test_labels, num_classes=12)# 构建深度学习模型
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(20, 80, 1)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))model.add(layers.Flatten())
model.add(layers.Dense(128, activation='relu'))
model.add(layers.Dense(12, activation='softmax'))# 编译模型
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])# 训练模型
history = model.fit(train_audio, train_labels, epochs=10, validation_data=(test_audio, test_labels), verbose=2)# 评估模型
test_loss, test_acc = model.evaluate(test_audio, test_labels, verbose=2)
print(f'测试准确率: {test_acc}')

在这里插入图片描述

第四章 深度学习的未来发展与挑战

4.1 计算资源与效率

深度学习模型的训练通常需要大量的计算资源和时间,如何提高训练效率和降低计算成本是一个重要的研究方向。研究方向包括分布式训练、模型压缩和量化等技术。

4.2 模型解释性与可解释性

深度学习模型通常是黑箱模型,难以解释其内部工作机制。研究如何提高深度学习模型的解释性和可解释性,帮助用户理解和信任模型的决策,是一个重要的研究课题。

4.3 小样本学习与迁移学习

在许多实际应用中,获取大量标注数据是困难的。研究如何在小样本条件下有效训练深度学习模型,以及利用迁移学习从已有模型中迁移知识,是深度学习的一个重要方向。

4.4 多模态学习与融合

多模态学习通过融合来自不同模态的数据(如图像、文本、语音等),可以提升模型的表现和应用范围。研究如何有效融合多模态数据,是深度学习的一个关键挑战。

结论

深度学习作为一种强大的机器学习方法,通过构建和训练多层神经网络,能够自动提取和学习数据的多层次特征,广泛应用于图像识别、自然语言处理和语音识别等领域。本文详细介绍了深度学习的基本概念、核心算法及其在实际中的应用,并提供了具体的代码示例,帮助读者深入理解和掌握这一技术。希望本文能够为您进一步探索和应用深度学习提供有价值的参考。

在这里插入图片描述

相关文章:

【机器学习】机器学习重要方法——深度学习:理论、算法与实践

文章目录 引言第一章 深度学习的基本概念1.1 什么是深度学习1.2 深度学习的历史发展1.3 深度学习的关键组成部分 第二章 深度学习的核心算法2.1 反向传播算法2.2 卷积神经网络(CNN)2.3 循环神经网络(RNN) 第三章 深度学习的应用实…...

计网之IP

IP IP基本认识 不使用NAT时,源IP地址和目的IP地址不变,只要源MAC和目的MAC地址在变化 IP地址 D类是组播地址,E类是保留地址 无分类地址CIDR 解决直接分类的B类65536太多,C类256太少a.b.c.d/x的前x位属于网路号,剩…...

mybatis延迟加载

mybatis延迟加载 1、延迟加载概述 应用场景 ​ 如果查询订单并且关联查询用户信息。如果先查询订单信息即可满足要求,当我们需要查询用户信息时再查询用户信息。把对用户信息的按需去查询就是延迟加载。 延迟加载的好处 ​ 先从单表查询、需要时再从关联表去关联查…...

危险!属性拷贝工具的坑!

1. 背景​ 之前在专栏中讲过“不推荐使用属性拷贝工具”,推荐直接定义转换类和方法使用 IDEA 插件自动填充 get / set 函数。 不推荐的主要理由是: 有些属性拷贝工具性能有点差有些属性拷贝工具有“BUG”使用属性拷贝工具容易存在一些隐患&#xff08…...

qt实现打开pdf(阅读器)功能用什么库比较合适

关于这个问题,网上搜一下,可以看到非常多的相关博客和例子,可以先看看这个总结性的博客(https://zhuanlan.zhihu.com/p/480973072) 该博客讲得比较清楚了,这里我再补充一下吧(qt官方也给出了一些…...

在node.js环境中使用web服务器http-server运行html静态文件

http-server http-server是一个超轻量级web服务器,它可以将任何一个文件夹当作服务器的目录供自己使用。 当我们想要在服务器运行一些代码,但是又不会配置服务器的时候,就可以使用http-server就可以搞定了。 使用方法 因为http-server需要…...

前端学习篇一(HTML)

Introduction ##文章内容:使用HBuilder制作一个简单的HTML5网页以此达到学习HTML5 的目的 ##编写内容:1.HTML实现平台 2.HTML简介 3.HTML语言解析 ##编写人:贾雯爽 ##最后更新时间:2024/07/01 Overview Details 一、HTML简介…...

VUE笔记

框架: 框架结构,把很多基础功能已经实现(封装了)。 框架:在基础语言之上,对各种基础功能进行封装,方便开发者,提高开发效率。 举例:操作页面 现在:点击按…...

Datawhale机器学习day-1

赛题 在当今科技日新月异的时代,人工智能(AI)技术正以前所未有的深度和广度渗透到科研领域,特别是在化学及药物研发中展现出了巨大潜力。精准预测分子性质有助于高效筛选出具有优异性能的候选药物。以PROTACs为例,它是…...

业务模型扩展字段存储

构建业务模型时,通常模型会设置扩展信息,存储上一般使用JSON格式存储到db中。JSON虽然有较好的扩展性,但并没有结构化存储的类型和非空等约束,且强依赖代码中写入/读取时进行序列化/反序列化操作, 当扩展信息结构简单且…...

50+k8s常用命令,助你成为k8s大牛!

Kubernetes是一个强大的容器编排平台,不管是运维、开发还是测试或多或少都会接触到,熟练的掌握k8s可大大提高工作效率和强化自身技能。 集群管理 1. 查看集群节点状态: kubectl get nodes2. 查看集群资源使用情况: kubectl top nodes3. 查看集群信息…...

002-基于Sklearn的机器学习入门:回归分析(上)

本节及后续章节将介绍机器学习中的几种经典回归算法,所选方法都在Sklearn库中聚类模块有具体实现。本节为上篇,将介绍基础的线性回归方法,包括线性回归、逻辑回归、多项式回归和岭回归等。 2.1 回归分析概述 回归(Regression&…...

python实现网页自动化(自动登录需要验证的网页)

引言: python作为实现网页自动化的一个重要工具,其强大的各种封装的库使得程序运行更加简洁,只需要下载相应的库,然后调用库中的函数就可以简便的实现我们想要的网页相关操作。 正文: 我的前几篇文章写了关于初学爬虫中比较容易上手的功能,例如爬取静态网页的数据、动…...

ctfshow-web入门-命令执行(web71-web74)

目录 1、web71 2、web72 3、web73 4、web74 1、web71 像上一题那样扫描但是输出全是问号 查看提示:我们可以结合 exit() 函数执行php代码让后面的匹配缓冲区不执行直接退出。 payload: cvar_export(scandir(/));exit(); 同理读取 flag.txt cinclud…...

一体化导航的优点及应用领域

一体化导航,作为现代导航技术的重要发展方向,正日益展现出其独特的魅力和广泛的应用前景。这种导航方式将多种导航技术、信息系统以及数据处理方法集成于一个统一的平台上,为用户提供高效、准确、便捷的导航服务。 一体化导航的核心在于其高度…...

“吃饭大学”!中国大学食堂排行TOP10(含西电)

同学们们,考研择校考虑的因素除了学术,地理位置等方面,你们还会考虑哪些因素呢?小研作为一个吃货,必定会考虑的一个因素当然是大学的食堂美食啊~ 那中国超级好吃的大学食堂在哪?一起来看看有没有你的目标院…...

使用 Mybatis 时,调用 DAO接口时是怎么调用到 SQL 的?

Mybatis 是一个流行的 Java 持久层框架,它提供了一种半自动的 SQL 映射方式,允许开发者在 Java 代码中以一种更加直观和灵活的方式来操作数据库。当你使用 Mybatis 调用 DAO 接口时,背后的工作流程大致如下: 接口定义:…...

微信小程序毕业设计-微信食堂线上订餐系统项目开发实战(附源码+论文)

大家好!我是程序猿老A,感谢您阅读本文,欢迎一键三连哦。 💞当前专栏:微信小程序毕业设计 精彩专栏推荐👇🏻👇🏻👇🏻 🎀 Python毕业设计…...

昂首资本实例使用价格行为策略,交易翻倍一点都不难

交易翻倍难吗?当Anzo Capital昂首资本使用价格行为策略进行交易时,发现一点都不难,以下是使用价格行为策略的实例分享: 1. 在初次交易信号出现时,推荐在1.00429价位入场,将止损设于1.04399,止盈…...

20240701 每日AI必读资讯

🏫AI真炼丹:整整14天,无需人类参与 - 英矽智能推出全球首个AI参与决策的生物学实验室,实现了14天内完成靶点发现和验证的全自动化闭环实验。 - 该实验室由PandaOmics平台驱动,集成多种预测模型和海量数据&#xff0…...

GPT-5 一年半后发布,对此你有何期待?

IT之家6月22日消息,在美国达特茅斯工程学院周四公布的采访中,OpenAI首席技术官米拉穆拉蒂被问及GPT-5是否会在明年发布,给出了肯定答案并表示将在一年半后发布。此外,穆拉蒂在采访中还把GPT-4到GPT-5的飞跃描述为高中生到博士生的…...

Redis学习——Redisson 分布式锁集成及其简单使用

文章目录 引言1. Redisson概述1.1 Redisson的基本概念1.2 Redisson的主要功能1.3 Redisson的优点 2. 开发环境3. Redisson的安装与配置3.1 添加依赖3.2 配置Redisson 4. 使用Redisson4.1 可重入锁4.1.1 可重入锁的概念4.1.2 可重入锁的实现原理4.1.3 简单使用锁的获取和释放 4.…...

08 - matlab m_map地学绘图工具基础函数 - 绘制线、图例、添加文字注释等函数

08 - matlab m_map地学绘图工具基础函数 - 绘制线、图例、添加文字注释等函数 0. 引言1. 关于m_line2. 关于m_quiver3. 关于m_text4. 关于m_plot5. 结语 0. 引言 本篇介绍下m_map中添加绘制基础线(m_line、m_plot)、绘制箭头(m_quiver&#x…...

Luminar Neo 1.20.0 (macOS Universal) - 创新 AI 图像编辑器

Luminar Neo 1.20.0 (macOS Universal) - 创新 AI 图像编辑器 利用尖端的人工智能生成技术,轻松增强照片效果 请访问原文链接:https://sysin.org/blog/luminar-neo/,查看最新版。原创作品,转载请保留出处。 作者主页&#xff1…...

谈谈Flink消费kafka的偏移量

offset配置: flinkKafkaConsumer.setStartFromEarliest():从topic的最早offset位置开始处理数据,如果kafka中保存有消费者组的消费位置将被忽略。 flinkKafkaConsumer.setStartFromLatest():从topic的最新offset位置开始处理数据,如果kafka中保存有消费…...

MySQL 高级SQL高级语句(二)

一.CREATE VIEW 视图 可以被当作是虚拟表或存储查询。 视图跟表格的不同是,表格中有实际储存数据记录,而视图是建立在表格之上的一个架构,它本身并不实际储存数据记录。 临时表在用户退出或同数据库的连接断开后就自动消失了,而…...

MySQL之高可用性(四)

高可用性 故障转移和故障恢复 冗余是很好的技术,但实际上只有在遇到故障需要恢复时才会用到。(见鬼,这可以用备份来实现)。冗余一点儿也不会增加可用性或减少宕机。在故障转移的过程中,高可用性是建立在冗余的基础上。当有一个组件失效&…...

招聘智能管理系统设计

设计一个招聘智能管理系统,需要从多个维度考虑,包括但不限于用户界面、功能模块、数据安全、算法模型等。以下是一个基本的设计框架: 1. 系统架构: 前端:提供直观的用户界面,包括应聘者和招聘者的登录/注册…...

达梦数据库系列—15. 表的备份和还原

目录 1、表备份 2、表还原 1、表备份 表备份和表还原恢复,都必须在联机状态下进行。 与备份数据库与表空间不同,不需要备份归档日志,不存在增量备份之说。 CREATE TABLE TAB_FOR_RES_02(C1 INT);CREATE INDEX I_TAB_FOR_RES_02 ON TAB_F…...

无线领夹麦克风哪个品牌音质最好,直播用领夹麦克风还是声卡麦

随着社交媒体的兴起,直播和Vlog已经成为内容创作的新趋势,这些变化不仅改变了人们分享生活的方式,也带动了音频设备市场的增长。无线领夹麦克风,以其便携性和卓越的录音品质,迅速成为视频制作者的重要工具。它们在直播…...

《Windows API每日一练》6.2 客户区鼠标消息

第五章已经讲到,Windows只会把键盘消息发送到当前具有输入焦点的窗口。鼠标消息则不同:当鼠标经过窗口或在窗口内被单击,则即使该窗口是非活动窗口或不带输入焦点, 窗口过程还是会收到鼠标消息。Windows定义了 21种鼠标消息。不过…...

体验升级:扫描全能王智能高清滤镜2.0全面测评

🤵‍♂️ 个人主页:艾派森的个人主页 ✍🏻作者简介:Python学习者 🐋 希望大家多多支持,我们一起进步!😄 如果文章对你有帮助的话, 欢迎评论 💬点赞&#x1f4…...

【JVM系列】JVM调优

💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…...

Linux基础 - Postfix 与 Dovecot 部署邮件系统

目录 零. 简介 一. 部署 二. 设置用户别名信箱 三. Linux 邮件客户端 零. 简介 Postfix 和 Dovecot 是在 Linux 系统中常用于部署邮件系统的两个重要组件。 Postfix 是一种邮件传输代理(MTA),主要负责接收、转发和发送邮件。它具有高性能…...

Qt的安装

一、Qt安装 下载地址:https://download.qt.io/archive/qt/ opencv下载安装 下载地址:https://opencv.org/releases/ 陈年旧文,没有下文,以此纪念。。。。。...

ThreeJS-3D教学十二:ShaderMaterial

一、首先 Shader 是做什么的 Shader 可以自定义每个顶点、每个片元/像素如何显示,而控制顶点和片元显示是通过设置 vertexShader 顶点着色器和 fragmentShader 片元着色器,这两个着色器用在 ShaderMaterial 和 RawShaderMaterial 材质上。 我们先看一个例…...

计算机网络面试TCP篇之TCP三次握手与四次挥手

TCP 三次握手与四次挥手面试题 任 TCP 虐我千百遍,我仍待 TCP 如初恋。 巨巨巨巨长的提纲,发车!发车! PS:本次文章不涉及 TCP 流量控制、拥塞控制、可靠性传输等方面知识,这些知识在这篇: TCP …...

Python-数据分析组合可视化实例图【附完整源码】

数据分析组合可视化实例图 开篇:应女朋友的要求,于是写下了这篇详细的数据可视化代码及完整注释 一:柱状图、折线图横向组合网格布局 本段代码使用了pyecharts库来创建一个包含多个图表(柱状图、折线图)和网格布局的…...

【JavaEE】Spring Web MVC详解

一.基本概念. 1.什么是Spring Web MVC? 官方链接: https://docs.spring.io/spring-framework/reference/web/webmvc.html Spring Web MVC is the original web framework built on the Servlet API and has been included in the Spring Framework from the very beginning…...

docker安装rocketMq5x以上的版本

1.背景 安装RocketMQ 5.x以上的版本主要是因为新版本引入了许多性能优化、新功能以及对已有特性的增强,这些改进可以帮助提升消息队列系统的稳定性和效率。 1.性能提升:RocketMQ 5.x版本通常包括了对消息处理速度、吞吐量和延迟的优化,使得系…...

【Spring】DAO 和 Repository 的区别

DAO 和 Repository 的区别 1.概述2.DAO 模式2.1 User2.2 UserDao2.3 UserDaoImpl 3.Repository 模式3.1 UserRepository3.2 UserRepositoryImpl 4.具有多个 DAO 的 Repository 模式4.1 Tweet4.2 TweetDao 和 TweetDaoImpl4.3 增强 User 域4.4 UserRepositoryImpl 5.比较两种模式…...

高阶面试-秒杀系统的设计

场景 特价商品如茅台,在8月1日22点10分0秒开始秒杀 平台用户量:几千万,预计几十万用户感兴趣 需求 临时性的活动,不要太大技术改动 原则 商品不能超卖下单成功的订单不能丢失服务器和数据库不能崩溃尽量不让机器人抢走商品 …...

四十五、 证券基金业数据出境有无特别规范需要注意?

证券基金业数据合规除应遵守本《实务问答》前述的各项通用规定外,还应注意中国证券监督管理委员会等其他机构发布的相关规范。其中,与数据出境相关的主要包括《证券期货业数据分类分级指引》(JR/T 0158—2018,2018年 9月 27日实施…...

02.Linux下安装FFmpeg

目录 一、下载FFmpeg的编译源码 二、编译源码 三、ffmpeg工具结构解析 1、bin目录 2、include库 3、lib库 四、注意事项 五、可能出现的一些问题 1、某些工具未安装/版本过久 2、缺少pkg-config工具 3、缺少ffmplay FFmpeg 是一个开源的跨平台音视频处理工具集&…...

华为RH2288H V2服务器,远程端口安装Linux操作系统

1、管理口 每台服务器的管理口不一样的,假如我的管理IP地址为:192.168.111.201 使用网线,将管理口和自己电脑连接起来,自己ip地址设置成和管理ip同一网段。 使用 ie 浏览器,如果是Edge,必须在Internet Exp…...

JS在线加密简述

JS在线加密,是指:在线进行JS代码混淆加密。通过混淆、压缩、加密等手段,使得JS源代码难以阅读和理解。从而可以有效防止代码被盗用或抄袭,保护开发者的知识产权和劳动成果。常用的JS在线加密网站有:JShaman、JS-Obfusc…...

理想汽车提出3DRealCar:首个大规模3D真实汽车数据集

理想提出3DRealCar,这是第一个大规模 3D 实车数据集,包含 2500 辆在真实场景中拍摄的汽车。我们希望 3DRealCar 可以成为促进汽车相关任务的宝贵资源。 理想汽车提出3DRealCar:首个大规模3D真实汽车数据集! 我们精心策划的高质量3DRealCar数…...

HTML5文旅文化旅游网站模板源码

文章目录 1.设计来源文旅宣传1.1 登录界面演示1.2 注册界面演示1.3 首页界面演示1.4 文旅之行界面演示1.5 文旅之行文章内容界面演示1.6 关于我们界面演示1.7 文旅博客界面演示1.8 文旅博客文章内容界面演示1.9 联系我们界面演示 2.效果和源码2.1 动态效果2.2 源代码2.3 源码目…...

山东大学多核并行2024年回忆版

2024.6.13回忆版 矩阵向量乘不可整除代码 集合通信与点对点通信的区别 块划分、循环划分、循环块划分(14个向量,4个进程) 按行访问还是按列访问快 SISD系统问题 循环依赖问题 问题:为什么不能对这个循环并行化&#xff0…...

CentOS 7 上搭建 JavaEE 环境

CentOS 7 上搭建 JavaEE 环境 安装 Java 环境 1)检查系统中是否已安装 Java java -version如果未安装,将返回提示信息。 2)安装 Java 8 sudo yum install java-1.8.0-openjdk3)配置 Java 环境变量,编辑 /etc/prof…...

Authlib,一个终极利器 Python 库专注于提供各种认证和授权解决方案

目录 01什么是 Authlib? Authlib 简介 为什么选择 Authlib? 安装与配置 02Authlib 的基本用法 实现 OAuth 2 客户端 1、创建 OAuth 2 客户端 2、获取访问令牌 3、使用访问令牌访问资源 实现 OAuth 2 服务器 1、创建 OAuth 2 服务器 2、实现授权端点 3、实现资源端…...

Chirp信号生成(FPGA、基于cordic IP核)

一、Chirp生成模块介绍 采用Verilog 生成Chirp,实现输入使能电平,模块输出Chirp信号,Chirp信号频率范围,时间宽度,连续Chirp信号数量可配置。 二、模块例化方法示例 parameter FL d20_000 ; parameter FH…...

大数据面试题之Flume

目录 介绍下Flume Flume架构 Flume有哪些Source 说下Flume事务机制 介绍下Flume采集数据的原理?底层实现? Flume如何保证数据的可靠性 Flume传输数据时如何保证数据一致性(可靠性) Flume拦截器 如何监控消费型Flu…...

网线直连电脑可以上网,网线连tplink路由器上不了网

家里wifi网络连不上好几天了,用网线直连电脑可以上网,但网线连tplink路由器wan口上不了网,无Internet连接,网线连lan口可以电脑上网,手机上不了。 后来发现网线的主路由用的192.168.0.1,我的路由器wan口自…...

关于 AD21导入电子元器件放置“3D体”STEP模型失去3D纹理贴图 的解决方法

若该文为原创文章,转载请注明原文出处 本文章博客地址:https://hpzwl.blog.csdn.net/article/details/139969415 长沙红胖子Qt(长沙创微智科)博文大全:开发技术集合(包含Qt实用技术、树莓派、三维、OpenCV…...

Golang | Leetcode Golang题解之第206题反转链表

题目: 题解: func reverseList(head *ListNode) *ListNode {if head nil || head.Next nil {return head}newHead : reverseList(head.Next)head.Next.Next headhead.Next nilreturn newHead }...

对比探界者Plus、探岳、CR-V,该如何选?

对于多数以家庭为购车出发点的消费者来说,一台15-20万级的合资SUV,基本能够满足品牌、空间、配置、品质方面的多重购车需求。因此这个价位的车型往往有着巨大的体量和需求,同时也意味着竞争的激烈程度非比寻常。以往大家做选择时,可能会将注意力放在德系和日系合资车型上,…...

竞争问界M7?东风奕派eπ008将于6月上市

作为东风奕派品牌旗下的第二款量产车型,东风奕派eπ008定位中大型SUV,已在2024北京车展期间开启预售,预售价格为20万-25万元。而日前笔者从相关渠道获悉,东风奕派eπ008将于今年6月完成上市。结合实车图来看,东风奕派eπ008拥有宽大饱满的车头造型,同时前包围两侧集成熏黑…...

摩尔线程MTT S4000 AI GPU助力30亿参数大模型训练,性能比肩英伟达同类解决方案

中国国产GPU制造商摩尔线程(Moore Threads)在AI加速器领域取得了显著进展,其最新推出的MTT S4000 AI GPU在训练大规模语言模型时表现突出,据称相较于其前代产品有着显著的性能提升。根据cnBeta的报道,搭载S4000 GPU的全新“酷鹅千卡智能计算集…...

什么是React?

01 Why React? What is React? I think the one-line description of React on its home page (https://react.dev/) is concise and accurate: “A JavaScript library for building user interfaces.” 我认为React主页(https://react.dev/)上的一行描述既简洁又准确: …...

Linux Tcpdump抓包入门

Linux Tcpdump抓包入门 一、Tcpdump简介 tcpdump 是一个在Linux系统上用于网络分析和抓包的强大工具。它能够捕获网络数据包并提供详细的分析信息,有助于网络管理员和开发人员诊断网络问题和监控网络流量。 安装部署 # 在Debian/Ubuntu上安装 sudo apt-get install…...

Flutter 中的 ShrinkWrappingViewPort 小部件:全面指南

Flutter 中的 ShrinkWrappingViewPort 小部件:全面指南 Flutter 是一个由 Google 开发的 UI 框架,它允许开发者使用 Dart 语言来构建跨平台的移动应用。在 Flutter 的布局体系中,ShrinkWrappingViewport 是一个特殊的滚动视图,它…...