Leetcode 2065. 最大化一张图中的路径价值(DFS / 最短路)
Leetcode 2065. 最大化一张图中的路径价值
暴力DFS
容易想到,从0点出发DFS,期间维护已经走过的距离(时间)和途径点的权值之和,若访问到0点则更新答案,若下一步的距离与已走过的距离和超出了maxTime,则不能向下继续DFS
注意的是,每个点的权值只会计算一次,可以使用一个boolean数组 vis[ ] 来记录该点的权值是否已经计算过
另一种方法是,每当第一次到达一个点并获得权值后,将它的权值修改为0,若后续又一次访问到该点,加0不会影响最终结果,省去vis数组的操作
超时,通过样例59 / 62
class Solution {int res;public void dfs(int x, int[] values, int[][] map, int maxTime, int time, int sum){if(x == 0){res = Math.max(res, sum);}int n = values.length;for(int i = 0 ; i < n; i ++){if(map[x][i] != 0 && time + map[x][i] <= maxTime){int val = values[i];values[i] = 0;dfs(i, values, map, maxTime, time + map[x][i], sum + val);values[i] = val;}}return ;}public int maximalPathQuality(int[] values, int[][] edges, int maxTime) {int n = values.length;int [][] map = new int [n][n];for(int[] e: edges){int a = e[0];int b = e[1];int t = e[2];map[a][b] = t;map[b][a] = t;}res = 0;int val = values[0];values[0] = 0;dfs(0, values, map, maxTime, 0, val);return res;}
}
最短路 优化剪枝
注意到,当判断一个点是否可以继续深入时,可以考虑的一种剪枝方式是,向该点前进后,若剩余的时间不足以返回0点,则不必向该点DFS
该问题转换为,判断x点回到0点的距离是否超过maxTime - time,即为0点出发的最短路问题,使用Dijstra算法实现
另一方面,当图中的点较稀疏时,使用邻接矩阵遍历找边会导致时间的浪费,因此选择使用邻接表实现图的存储
class Solution {int res;public void dfs(int x, int[] values, List<int[]>[] map, int maxTime, int time, int sum, int[] dis){if(x == 0){res = Math.max(res, sum);}int n = values.length;for(int arr[] : map[x]){int y = arr[0];int t = arr[1];// 求和时增加dis,若不足返回0点则不必DFSif(time + t + dis[y] <= maxTime){int val = values[y];values[y] = 0;dfs(y, values, map, maxTime, time + t, sum + val, dis);values[y] = val;}}return ;}public int maximalPathQuality(int[] values, int[][] edges, int maxTime) {int n = values.length;// 邻接表 map[x]为x发出的边的集合List,List中的每个int[],int[0]为终点,int[1]为距离List<int[]>[] map = new ArrayList[n];for(int i = 0 ; i < n; i ++){map[i] = new ArrayList<int[]>();}for(int[] e: edges){int a = e[0];int b = e[1];int t = e[2];map[a].add(new int[]{b, t});map[b].add(new int[]{a, t});}// dijstraint inf = Integer.MAX_VALUE;int dis[] = new int [n];Arrays.fill(dis, inf);for(int [] arr: map[0]){int y = arr[0];int t = arr[1];dis[y] = t;}boolean vis[] = new boolean[n];vis[0] = true;while(true){int min = Integer.MAX_VALUE;int index = -1;for(int i = 0 ; i < n; i ++){if(!vis[i] && dis[i] < min){min = dis[i];index = i;}}if(index == -1)break;vis[index] = true;// 遍历index点发出的边for (int[] arr : map[index]) {int v = arr[0];int t = arr[1];if (!vis[v] && dis[index] + t < dis[v]) {dis[v] = dis[index] + t;}}}// DFSres = 0;int val = values[0];values[0] = 0;dfs(0, values, map, maxTime, 0, val, dis);return res;}
}
相关文章:
Leetcode 2065. 最大化一张图中的路径价值(DFS / 最短路)
Leetcode 2065. 最大化一张图中的路径价值 暴力DFS 容易想到,从0点出发DFS,期间维护已经走过的距离(时间)和途径点的权值之和,若访问到0点则更新答案,若下一步的距离与已走过的距离和超出了maxTime&#…...
SeeSR: Towards Semantics-Aware Real-World Image Super-Resolution
CVPR2024 香港理工大学&OPPO&bytedancehttps://github.com/cswry/SeeSR?tabreadme-ov-file#-licensehttps://arxiv.org/pdf/2311.16518#page5.80 问题引入 因为有些LR退化情况比较严重,所以超分之后的结果会出现语义的不一致的情况,所以本文训…...
七月论文审稿GPT第5版:拿我司七月的早期paper-7方面review数据集微调LLama 3
前言 llama 3出来后,为了通过paper-review的数据集微调3,有以下各种方式 不用任何框架 工具 技术,直接微调原生的llama 3,毕竟也有8k长度了 效果不期望有多高,纯作为baseline通过PI,把llama 3的8K长度扩展…...
盘古5.0,靠什么去解最难的题?
文|周效敬 编|王一粟 当大模型的竞争开始拼落地,商业化在B端和C端都展开了自由生长。 在B端,借助云计算向千行万业扎根;在C端,通过软件App和智能终端快速迭代。 在华为,这家曾经以通信行业起…...
2.3章节Python中的数值类型
1.整型数值 2.浮点型数值 3.复数 Python中的数值类型清晰且丰富,主要分为以下几种类型,每种类型都有其特定的用途和特性。 一、整型数值 1.定义:整数类型用于表示整数值,如1、-5、100等。 2.特点: Python 3中的…...
每日Attention学习7——Frequency-Perception Module
模块出处 [link] [code] [ACM MM 23] Frequency Perception Network for Camouflaged Object Detection 模块名称 Frequency-Perception Module (FPM) 模块作用 获取频域信息,更好识别伪装对象 模块结构 模块代码 import torch import torch.nn as nn import to…...
【从0实现React18】 (五) 初探react mount流程 完成核心递归流程
更新流程的目的: 生成wip fiberNode树标记副作用flags 更新流程的步骤: 递:beginWork归:completeWork 在 上一节 ,我们探讨了 React 应用在首次渲染或后续更新时的整体更新流程。在 Reconciler 工作流程中ÿ…...
0-30 VDC 稳压电源,电流控制 0.002-3 A
怎么运行的 首先,有一个次级绕组额定值为 24 V/3 A 的降压电源变压器,连接在电路输入点的引脚 1 和 2 上。(电源输出的质量将直接影响与变压器的质量成正比)。变压器次级绕组的交流电压经四个二极管D1-D4组成的电桥整流。桥输出端…...
HTML5+CSS3+JS小实例:图片九宫格
实例:图片九宫格 技术栈:HTML+CSS+JS 效果: 源码: 【HTML】 <!DOCTYPE html> <html lang="zh-CN"> <head><meta charset="UTF-8"><meta name="viewport" content="width=device-width, initial-scale=1…...
湘潭大学软件工程数据库总结
文章目录 前言试卷结构给学弟学妹的一些参考自己的一些总结 前言 自己可能很早很早之前就准备复习了,但是感觉还是没有学到要点,主要还是没啥紧迫的压力,我们是三月份开学,那时候实验室有朋友挺认真开始学习数据库了,…...
Codeforces Testing Round 1 B. Right Triangles 题解 组合数学
Right Triangles 题目描述 You are given a n m nm nm field consisting only of periods (‘.’) and asterisks (‘*’). Your task is to count all right triangles with two sides parallel to the square sides, whose vertices are in the centers of ‘*’-cells. …...
怎样将word默认Microsoft Office,而不是WPS
设置——>应用——>默认应用——>选择"word"——>将doc和docx都选择Microsoft Word即可...
C语言之进程的学习2
Env环境变量(操作系统的全局变量)...
web使用cordova打包Andriod
一.安装Gradel 1.下载地址 Gradle Distributions 2.配置环境 3.测试是否安装成功 在cmd gradle -v 二.创建vite项目 npm init vitelatest npm install vite build 三.创建cordova项目 1.全局安装cordova npm install -g cordova 2. 创建项目 cordova create cordova-app c…...
内卷情况下,工程师也应该了解的项目管理
简介:大家好,我是程序员枫哥,🌟一线互联网的IT民工、📝资深面试官、🌹Java跳槽网创始人。拥有多年一线研发经验,曾就职过科大讯飞、美团网、平安等公司。在上海有自己小伙伴组建的副业团队&…...
【解锁未来:深入了解机器学习的核心技术与实际应用】
解锁未来:深入了解机器学习的核心技术与实际应用 💎1.引言💎1.1 什么是机器学习? 💎2 机器学习的分类💎3 常用的机器学习算法💎3.1 线性回归(Linear Regression)…...
1-3.文本数据建模流程范例
文章最前: 我是Octopus,这个名字来源于我的中文名–章鱼;我热爱编程、热爱算法、热爱开源。所有源码在我的个人github ;这博客是记录我学习的点点滴滴,如果您对 Python、Java、AI、算法有兴趣,可以关注我的…...
【FFmpeg】avformat_alloc_output_context2函数
【FFmpeg】avformat_alloc_output_context2函数 1.avformat_alloc_output_context21.1 初始化AVFormatContext(avformat_alloc_context)1.2 格式猜测(av_guess_format)1.2.1 遍历可用的fmt(av_muxer_iterate࿰…...
Flask 缓存和信号
Flask-Caching Flask-Caching 是 Flask 的一个扩展,它为 Flask 应用提供了缓存支持。缓存是一种优化技术,可以存储那些费时且不经常改变的运算结果,从而加快应用的响应速度。 一、初始化配置 安装 Flask-Caching 扩展: pip3 i…...
基于weixin小程序农场驿站系统的设计
管理员账户功能包括:系统首页,个人中心,农场资讯管理,用户管理,卖家管理,用户分享管理,分享类型管理,商品信息管理,商品类型管理 开发系统:Windows 架构模式…...
RocketMQ延迟消息机制
两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数,对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后…...
基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真
目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销,平衡网络负载,延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...
Leetcode 3577. Count the Number of Computer Unlocking Permutations
Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接:3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯,要想要能够将所有的电脑解锁&#x…...
多模态大语言模型arxiv论文略读(108)
CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题:CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者:Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...
Java面试专项一-准备篇
一、企业简历筛选规则 一般企业的简历筛选流程:首先由HR先筛选一部分简历后,在将简历给到对应的项目负责人后再进行下一步的操作。 HR如何筛选简历 例如:Boss直聘(招聘方平台) 直接按照条件进行筛选 例如:…...
Rapidio门铃消息FIFO溢出机制
关于RapidIO门铃消息FIFO的溢出机制及其与中断抖动的关系,以下是深入解析: 门铃FIFO溢出的本质 在RapidIO系统中,门铃消息FIFO是硬件控制器内部的缓冲区,用于临时存储接收到的门铃消息(Doorbell Message)。…...
SAP学习笔记 - 开发26 - 前端Fiori开发 OData V2 和 V4 的差异 (Deepseek整理)
上一章用到了V2 的概念,其实 Fiori当中还有 V4,咱们这一章来总结一下 V2 和 V4。 SAP学习笔记 - 开发25 - 前端Fiori开发 Remote OData Service(使用远端Odata服务),代理中间件(ui5-middleware-simpleproxy)-CSDN博客…...
管理学院权限管理系统开发总结
文章目录 🎓 管理学院权限管理系统开发总结 - 现代化Web应用实践之路📝 项目概述🏗️ 技术架构设计后端技术栈前端技术栈 💡 核心功能特性1. 用户管理模块2. 权限管理系统3. 统计报表功能4. 用户体验优化 🗄️ 数据库设…...
【7色560页】职场可视化逻辑图高级数据分析PPT模版
7种色调职场工作汇报PPT,橙蓝、黑红、红蓝、蓝橙灰、浅蓝、浅绿、深蓝七种色调模版 【7色560页】职场可视化逻辑图高级数据分析PPT模版:职场可视化逻辑图分析PPT模版https://pan.quark.cn/s/78aeabbd92d1...
深度学习之模型压缩三驾马车:模型剪枝、模型量化、知识蒸馏
一、引言 在深度学习中,我们训练出的神经网络往往非常庞大(比如像 ResNet、YOLOv8、Vision Transformer),虽然精度很高,但“太重”了,运行起来很慢,占用内存大,不适合部署到手机、摄…...
