当前位置: 首页 > news >正文

每日Attention学习7——Frequency-Perception Module

模块出处

[link] [code] [ACM MM 23] Frequency Perception Network for Camouflaged Object Detection


模块名称

Frequency-Perception Module (FPM)


模块作用

获取频域信息,更好识别伪装对象


模块结构

在这里插入图片描述

模块代码
import torch
import torch.nn as nn
import torch.nn.functional as Fclass FirstOctaveConv(nn.Module):def __init__(self, in_channels, out_channels, kernel_size, alpha=0.5, stride=1, padding=1, dilation=1,groups=1, bias=False):super(FirstOctaveConv, self).__init__()self.stride = stridekernel_size = kernel_size[0]self.h2g_pool = nn.AvgPool2d(kernel_size=(2, 2), stride=2)self.h2l = torch.nn.Conv2d(in_channels, int(alpha * in_channels),kernel_size, 1, padding, dilation, groups, bias)self.h2h = torch.nn.Conv2d(in_channels, in_channels - int(alpha * in_channels),kernel_size, 1, padding, dilation, groups, bias)def forward(self, x):if self.stride ==2:x = self.h2g_pool(x)X_h2l = self.h2g_pool(x)X_h = xX_h = self.h2h(X_h)X_l = self.h2l(X_h2l)return X_h, X_lclass OctaveConv(nn.Module):def __init__(self, in_channels, out_channels, kernel_size, alpha=0.5, stride=1, padding=1, dilation=1,groups=1, bias=False):super(OctaveConv, self).__init__()kernel_size = kernel_size[0]self.h2g_pool = nn.AvgPool2d(kernel_size=(2, 2), stride=2)self.upsample = torch.nn.Upsample(scale_factor=2, mode='nearest')self.stride = strideself.l2l = torch.nn.Conv2d(int(alpha * in_channels), int(alpha * out_channels),kernel_size, 1, padding, dilation, groups, bias)self.l2h = torch.nn.Conv2d(int(alpha * in_channels), out_channels - int(alpha * out_channels),kernel_size, 1, padding, dilation, groups, bias)self.h2l = torch.nn.Conv2d(in_channels - int(alpha * in_channels), int(alpha * out_channels),kernel_size, 1, padding, dilation, groups, bias)self.h2h = torch.nn.Conv2d(in_channels - int(alpha * in_channels),out_channels - int(alpha * out_channels),kernel_size, 1, padding, dilation, groups, bias)def forward(self, x):X_h, X_l = xif self.stride == 2:X_h, X_l = self.h2g_pool(X_h), self.h2g_pool(X_l)X_h2l = self.h2g_pool(X_h)X_h2h = self.h2h(X_h)X_l2h = self.l2h(X_l)X_l2l = self.l2l(X_l)X_h2l = self.h2l(X_h2l)X_l2h = F.interpolate(X_l2h, (int(X_h2h.size()[2]),int(X_h2h.size()[3])), mode='bilinear')X_h = X_l2h + X_h2hX_l = X_h2l + X_l2lreturn X_h, X_lclass LastOctaveConv(nn.Module):def __init__(self, in_channels, out_channels, kernel_size, alpha=0.5, stride=1, padding=1, dilation=1,groups=1, bias=False):super(LastOctaveConv, self).__init__()self.stride = stridekernel_size = kernel_size[0]self.h2g_pool = nn.AvgPool2d(kernel_size=(2, 2), stride=2)self.l2h = torch.nn.Conv2d(int(alpha * out_channels), out_channels,kernel_size, 1, padding, dilation, groups, bias)self.h2h = torch.nn.Conv2d(out_channels - int(alpha * out_channels),out_channels,kernel_size, 1, padding, dilation, groups, bias)self.upsample = torch.nn.Upsample(scale_factor=2, mode='nearest')def forward(self, x):X_h, X_l = xif self.stride == 2:X_h, X_l = self.h2g_pool(X_h), self.h2g_pool(X_l)X_h2h = self.h2h(X_h) X_l2h = self.l2h(X_l) X_l2h = F.interpolate(X_l2h, (int(X_h2h.size()[2]), int(X_h2h.size()[3])), mode='bilinear')X_h = X_h2h + X_l2h return X_hclass FPM(nn.Module):def __init__(self, in_channels, out_channels, kernel_size=(3, 3)):super(FPM, self).__init__()self.fir = FirstOctaveConv(in_channels, out_channels, kernel_size)self.mid1 = OctaveConv(in_channels, in_channels, kernel_size)self.mid2 = OctaveConv(in_channels, out_channels, kernel_size)self.lst = LastOctaveConv(in_channels, out_channels, kernel_size)def forward(self, x):x_h, x_l = self.fir(x)                  x_h_1, x_l_1 = self.mid1((x_h, x_l))     x_h_2, x_l_2 = self.mid1((x_h_1, x_l_1)) x_h_5, x_l_5 = self.mid2((x_h_2, x_l_2)) x_ret = self.lst((x_h_5, x_l_5))return x_retif __name__ == '__main__':x = torch.randn([3, 256, 16, 16])fpm = FPM(in_channels=256, out_channels=64)out = fpm(x)print(out.shape)  # 3, 64, 16, 16

原文表述

具体来说,我们采用八度卷积以端到端的方式自动感知高频和低频信息,从而实现伪装物体检测的在线学习。八度卷积可以有效避免DCT 引起的块状效应,并利用GPU的计算速度优势。此外,它可以轻松插入任意网络。

相关文章:

每日Attention学习7——Frequency-Perception Module

模块出处 [link] [code] [ACM MM 23] Frequency Perception Network for Camouflaged Object Detection 模块名称 Frequency-Perception Module (FPM) 模块作用 获取频域信息,更好识别伪装对象 模块结构 模块代码 import torch import torch.nn as nn import to…...

【从0实现React18】 (五) 初探react mount流程 完成核心递归流程

更新流程的目的: 生成wip fiberNode树标记副作用flags 更新流程的步骤: 递:beginWork归:completeWork 在 上一节 ,我们探讨了 React 应用在首次渲染或后续更新时的整体更新流程。在 Reconciler 工作流程中&#xff…...

0-30 VDC 稳压电源,电流控制 0.002-3 A

怎么运行的 首先,有一个次级绕组额定值为 24 V/3 A 的降压电源变压器,连接在电路输入点的引脚 1 和 2 上。(电源输出的质量将直接影响与变压器的质量成正比)。变压器次级绕组的交流电压经四个二极管D1-D4组成的电桥整流。桥输出端…...

HTML5+CSS3+JS小实例:图片九宫格

实例:图片九宫格 技术栈:HTML+CSS+JS 效果: 源码: 【HTML】 <!DOCTYPE html> <html lang="zh-CN"> <head><meta charset="UTF-8"><meta name="viewport" content="width=device-width, initial-scale=1…...

湘潭大学软件工程数据库总结

文章目录 前言试卷结构给学弟学妹的一些参考自己的一些总结 前言 自己可能很早很早之前就准备复习了&#xff0c;但是感觉还是没有学到要点&#xff0c;主要还是没啥紧迫的压力&#xff0c;我们是三月份开学&#xff0c;那时候实验室有朋友挺认真开始学习数据库了&#xff0c;…...

Codeforces Testing Round 1 B. Right Triangles 题解 组合数学

Right Triangles 题目描述 You are given a n m nm nm field consisting only of periods (‘.’) and asterisks (‘*’). Your task is to count all right triangles with two sides parallel to the square sides, whose vertices are in the centers of ‘*’-cells. …...

怎样将word默认Microsoft Office,而不是WPS

设置——>应用——>默认应用——>选择"word"——>将doc和docx都选择Microsoft Word即可...

C语言之进程的学习2

Env环境变量&#xff08;操作系统的全局变量&#xff09;...

web使用cordova打包Andriod

一.安装Gradel 1.下载地址 Gradle Distributions 2.配置环境 3.测试是否安装成功 在cmd gradle -v 二.创建vite项目 npm init vitelatest npm install vite build 三.创建cordova项目 1.全局安装cordova npm install -g cordova 2. 创建项目 cordova create cordova-app c…...

内卷情况下,工程师也应该了解的项目管理

简介&#xff1a;大家好&#xff0c;我是程序员枫哥&#xff0c;&#x1f31f;一线互联网的IT民工、&#x1f4dd;资深面试官、&#x1f339;Java跳槽网创始人。拥有多年一线研发经验&#xff0c;曾就职过科大讯飞、美团网、平安等公司。在上海有自己小伙伴组建的副业团队&…...

【解锁未来:深入了解机器学习的核心技术与实际应用】

解锁未来&#xff1a;深入了解机器学习的核心技术与实际应用 &#x1f48e;1.引言&#x1f48e;1.1 什么是机器学习&#xff1f; &#x1f48e;2 机器学习的分类&#x1f48e;3 常用的机器学习算法&#x1f48e;3.1 线性回归&#xff08;Linear Regression&#xff09;&#x1…...

1-3.文本数据建模流程范例

文章最前&#xff1a; 我是Octopus&#xff0c;这个名字来源于我的中文名–章鱼&#xff1b;我热爱编程、热爱算法、热爱开源。所有源码在我的个人github &#xff1b;这博客是记录我学习的点点滴滴&#xff0c;如果您对 Python、Java、AI、算法有兴趣&#xff0c;可以关注我的…...

【FFmpeg】avformat_alloc_output_context2函数

【FFmpeg】avformat_alloc_output_context2函数 1.avformat_alloc_output_context21.1 初始化AVFormatContext&#xff08;avformat_alloc_context&#xff09;1.2 格式猜测&#xff08;av_guess_format&#xff09;1.2.1 遍历可用的fmt&#xff08;av_muxer_iterate&#xff0…...

Flask 缓存和信号

Flask-Caching Flask-Caching 是 Flask 的一个扩展&#xff0c;它为 Flask 应用提供了缓存支持。缓存是一种优化技术&#xff0c;可以存储那些费时且不经常改变的运算结果&#xff0c;从而加快应用的响应速度。 一、初始化配置 安装 Flask-Caching 扩展&#xff1a; pip3 i…...

基于weixin小程序农场驿站系统的设计

管理员账户功能包括&#xff1a;系统首页&#xff0c;个人中心&#xff0c;农场资讯管理&#xff0c;用户管理&#xff0c;卖家管理&#xff0c;用户分享管理&#xff0c;分享类型管理&#xff0c;商品信息管理&#xff0c;商品类型管理 开发系统&#xff1a;Windows 架构模式…...

JAVA将List转成Tree树形结构数据和深度优先遍历

引言&#xff1a; 在日常开发中&#xff0c;我们经常会遇到需要将数据库中返回的数据转成树形结构的数据返回&#xff0c;或者需要对转为树结构后的数据绑定层级关系再返回&#xff0c;比如需要统计当前节点下有多少个节点等&#xff0c;因此我们需要封装一个ListToTree的工具类…...

设计模式——开闭、单一职责及里氏替换原则

设计原则是指导软件设计和开发的一系列原则&#xff0c;它们帮助开发者创建出易于维护、扩展和理解的代码。以下是你提到的几个关键设计原则的简要说明&#xff1a; 开闭原则&#xff08;Open/Closed Principle, OCP&#xff09;&#xff1a; 开闭原则由Bertrand Meyer提出&am…...

代码随想录算法训练营第59天:动态[1]

代码随想录算法训练营第59天&#xff1a;动态 两个字符串的删除操作 力扣题目链接(opens new window) 给定两个单词 word1 和 word2&#xff0c;找到使得 word1 和 word2 相同所需的最小步数&#xff0c;每步可以删除任意一个字符串中的一个字符。 示例&#xff1a; 输入: …...

jvm性能监控常用工具

在java的/bin目录下有许多java自带的工具。 我们常用的有 基础工具 jar:创建和管理jar文件 java&#xff1a;java运行工具&#xff0c;用于运行class文件或jar文件 javac&#xff1a;java的编译器 javadoc&#xff1a;java的API文档生成工具 性能监控和故障处理 jps jstat…...

ISP IC/FPGA设计-第一部分-SC130GS摄像头分析-IIC通信(1)

1.摄像头模组 SC130GS通过一个引脚&#xff08;SPI_I2C_MODE&#xff09;选择使用IIC或SPI配置接口&#xff0c;通过查看摄像头模组的原理图&#xff0c;可知是使用IIC接口&#xff1b; 通过手册可知IIC设备地址通过一个引脚控制&#xff0c;查看摄像头模组的原理图&#xff…...

深度学习在微纳光子学中的应用

深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向&#xff1a; 逆向设计 通过神经网络快速预测微纳结构的光学响应&#xff0c;替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...

OpenLayers 可视化之热力图

注&#xff1a;当前使用的是 ol 5.3.0 版本&#xff0c;天地图使用的key请到天地图官网申请&#xff0c;并替换为自己的key 热力图&#xff08;Heatmap&#xff09;又叫热点图&#xff0c;是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...

新能源汽车智慧充电桩管理方案:新能源充电桩散热问题及消防安全监管方案

随着新能源汽车的快速普及&#xff0c;充电桩作为核心配套设施&#xff0c;其安全性与可靠性备受关注。然而&#xff0c;在高温、高负荷运行环境下&#xff0c;充电桩的散热问题与消防安全隐患日益凸显&#xff0c;成为制约行业发展的关键瓶颈。 如何通过智慧化管理手段优化散…...

现代密码学 | 椭圆曲线密码学—附py代码

Elliptic Curve Cryptography 椭圆曲线密码学&#xff08;ECC&#xff09;是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础&#xff0c;例如椭圆曲线数字签…...

ardupilot 开发环境eclipse 中import 缺少C++

目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...

CMake 从 GitHub 下载第三方库并使用

有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...

优选算法第十二讲:队列 + 宽搜 优先级队列

优选算法第十二讲&#xff1a;队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...

智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制

在数字化浪潮席卷全球的今天&#xff0c;数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具&#xff0c;在大规模数据获取中发挥着关键作用。然而&#xff0c;传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时&#xff0c;常出现数据质…...

从面试角度回答Android中ContentProvider启动原理

Android中ContentProvider原理的面试角度解析&#xff0c;分为​​已启动​​和​​未启动​​两种场景&#xff1a; 一、ContentProvider已启动的情况 1. ​​核心流程​​ ​​触发条件​​&#xff1a;当其他组件&#xff08;如Activity、Service&#xff09;通过ContentR…...

MFE(微前端) Module Federation:Webpack.config.js文件中每个属性的含义解释

以Module Federation 插件详为例&#xff0c;Webpack.config.js它可能的配置和含义如下&#xff1a; 前言 Module Federation 的Webpack.config.js核心配置包括&#xff1a; name filename&#xff08;定义应用标识&#xff09; remotes&#xff08;引用远程模块&#xff0…...