每日Attention学习7——Frequency-Perception Module
模块出处
[link] [code] [ACM MM 23] Frequency Perception Network for Camouflaged Object Detection
模块名称
Frequency-Perception Module (FPM)
模块作用
获取频域信息,更好识别伪装对象
模块结构

模块代码
import torch
import torch.nn as nn
import torch.nn.functional as Fclass FirstOctaveConv(nn.Module):def __init__(self, in_channels, out_channels, kernel_size, alpha=0.5, stride=1, padding=1, dilation=1,groups=1, bias=False):super(FirstOctaveConv, self).__init__()self.stride = stridekernel_size = kernel_size[0]self.h2g_pool = nn.AvgPool2d(kernel_size=(2, 2), stride=2)self.h2l = torch.nn.Conv2d(in_channels, int(alpha * in_channels),kernel_size, 1, padding, dilation, groups, bias)self.h2h = torch.nn.Conv2d(in_channels, in_channels - int(alpha * in_channels),kernel_size, 1, padding, dilation, groups, bias)def forward(self, x):if self.stride ==2:x = self.h2g_pool(x)X_h2l = self.h2g_pool(x)X_h = xX_h = self.h2h(X_h)X_l = self.h2l(X_h2l)return X_h, X_lclass OctaveConv(nn.Module):def __init__(self, in_channels, out_channels, kernel_size, alpha=0.5, stride=1, padding=1, dilation=1,groups=1, bias=False):super(OctaveConv, self).__init__()kernel_size = kernel_size[0]self.h2g_pool = nn.AvgPool2d(kernel_size=(2, 2), stride=2)self.upsample = torch.nn.Upsample(scale_factor=2, mode='nearest')self.stride = strideself.l2l = torch.nn.Conv2d(int(alpha * in_channels), int(alpha * out_channels),kernel_size, 1, padding, dilation, groups, bias)self.l2h = torch.nn.Conv2d(int(alpha * in_channels), out_channels - int(alpha * out_channels),kernel_size, 1, padding, dilation, groups, bias)self.h2l = torch.nn.Conv2d(in_channels - int(alpha * in_channels), int(alpha * out_channels),kernel_size, 1, padding, dilation, groups, bias)self.h2h = torch.nn.Conv2d(in_channels - int(alpha * in_channels),out_channels - int(alpha * out_channels),kernel_size, 1, padding, dilation, groups, bias)def forward(self, x):X_h, X_l = xif self.stride == 2:X_h, X_l = self.h2g_pool(X_h), self.h2g_pool(X_l)X_h2l = self.h2g_pool(X_h)X_h2h = self.h2h(X_h)X_l2h = self.l2h(X_l)X_l2l = self.l2l(X_l)X_h2l = self.h2l(X_h2l)X_l2h = F.interpolate(X_l2h, (int(X_h2h.size()[2]),int(X_h2h.size()[3])), mode='bilinear')X_h = X_l2h + X_h2hX_l = X_h2l + X_l2lreturn X_h, X_lclass LastOctaveConv(nn.Module):def __init__(self, in_channels, out_channels, kernel_size, alpha=0.5, stride=1, padding=1, dilation=1,groups=1, bias=False):super(LastOctaveConv, self).__init__()self.stride = stridekernel_size = kernel_size[0]self.h2g_pool = nn.AvgPool2d(kernel_size=(2, 2), stride=2)self.l2h = torch.nn.Conv2d(int(alpha * out_channels), out_channels,kernel_size, 1, padding, dilation, groups, bias)self.h2h = torch.nn.Conv2d(out_channels - int(alpha * out_channels),out_channels,kernel_size, 1, padding, dilation, groups, bias)self.upsample = torch.nn.Upsample(scale_factor=2, mode='nearest')def forward(self, x):X_h, X_l = xif self.stride == 2:X_h, X_l = self.h2g_pool(X_h), self.h2g_pool(X_l)X_h2h = self.h2h(X_h) X_l2h = self.l2h(X_l) X_l2h = F.interpolate(X_l2h, (int(X_h2h.size()[2]), int(X_h2h.size()[3])), mode='bilinear')X_h = X_h2h + X_l2h return X_hclass FPM(nn.Module):def __init__(self, in_channels, out_channels, kernel_size=(3, 3)):super(FPM, self).__init__()self.fir = FirstOctaveConv(in_channels, out_channels, kernel_size)self.mid1 = OctaveConv(in_channels, in_channels, kernel_size)self.mid2 = OctaveConv(in_channels, out_channels, kernel_size)self.lst = LastOctaveConv(in_channels, out_channels, kernel_size)def forward(self, x):x_h, x_l = self.fir(x) x_h_1, x_l_1 = self.mid1((x_h, x_l)) x_h_2, x_l_2 = self.mid1((x_h_1, x_l_1)) x_h_5, x_l_5 = self.mid2((x_h_2, x_l_2)) x_ret = self.lst((x_h_5, x_l_5))return x_retif __name__ == '__main__':x = torch.randn([3, 256, 16, 16])fpm = FPM(in_channels=256, out_channels=64)out = fpm(x)print(out.shape) # 3, 64, 16, 16
原文表述
具体来说,我们采用八度卷积以端到端的方式自动感知高频和低频信息,从而实现伪装物体检测的在线学习。八度卷积可以有效避免DCT 引起的块状效应,并利用GPU的计算速度优势。此外,它可以轻松插入任意网络。
相关文章:
每日Attention学习7——Frequency-Perception Module
模块出处 [link] [code] [ACM MM 23] Frequency Perception Network for Camouflaged Object Detection 模块名称 Frequency-Perception Module (FPM) 模块作用 获取频域信息,更好识别伪装对象 模块结构 模块代码 import torch import torch.nn as nn import to…...
【从0实现React18】 (五) 初探react mount流程 完成核心递归流程
更新流程的目的: 生成wip fiberNode树标记副作用flags 更新流程的步骤: 递:beginWork归:completeWork 在 上一节 ,我们探讨了 React 应用在首次渲染或后续更新时的整体更新流程。在 Reconciler 工作流程中ÿ…...
0-30 VDC 稳压电源,电流控制 0.002-3 A
怎么运行的 首先,有一个次级绕组额定值为 24 V/3 A 的降压电源变压器,连接在电路输入点的引脚 1 和 2 上。(电源输出的质量将直接影响与变压器的质量成正比)。变压器次级绕组的交流电压经四个二极管D1-D4组成的电桥整流。桥输出端…...
HTML5+CSS3+JS小实例:图片九宫格
实例:图片九宫格 技术栈:HTML+CSS+JS 效果: 源码: 【HTML】 <!DOCTYPE html> <html lang="zh-CN"> <head><meta charset="UTF-8"><meta name="viewport" content="width=device-width, initial-scale=1…...
湘潭大学软件工程数据库总结
文章目录 前言试卷结构给学弟学妹的一些参考自己的一些总结 前言 自己可能很早很早之前就准备复习了,但是感觉还是没有学到要点,主要还是没啥紧迫的压力,我们是三月份开学,那时候实验室有朋友挺认真开始学习数据库了,…...
Codeforces Testing Round 1 B. Right Triangles 题解 组合数学
Right Triangles 题目描述 You are given a n m nm nm field consisting only of periods (‘.’) and asterisks (‘*’). Your task is to count all right triangles with two sides parallel to the square sides, whose vertices are in the centers of ‘*’-cells. …...
怎样将word默认Microsoft Office,而不是WPS
设置——>应用——>默认应用——>选择"word"——>将doc和docx都选择Microsoft Word即可...
C语言之进程的学习2
Env环境变量(操作系统的全局变量)...
web使用cordova打包Andriod
一.安装Gradel 1.下载地址 Gradle Distributions 2.配置环境 3.测试是否安装成功 在cmd gradle -v 二.创建vite项目 npm init vitelatest npm install vite build 三.创建cordova项目 1.全局安装cordova npm install -g cordova 2. 创建项目 cordova create cordova-app c…...
内卷情况下,工程师也应该了解的项目管理
简介:大家好,我是程序员枫哥,🌟一线互联网的IT民工、📝资深面试官、🌹Java跳槽网创始人。拥有多年一线研发经验,曾就职过科大讯飞、美团网、平安等公司。在上海有自己小伙伴组建的副业团队&…...
【解锁未来:深入了解机器学习的核心技术与实际应用】
解锁未来:深入了解机器学习的核心技术与实际应用 💎1.引言💎1.1 什么是机器学习? 💎2 机器学习的分类💎3 常用的机器学习算法💎3.1 线性回归(Linear Regression)…...
1-3.文本数据建模流程范例
文章最前: 我是Octopus,这个名字来源于我的中文名–章鱼;我热爱编程、热爱算法、热爱开源。所有源码在我的个人github ;这博客是记录我学习的点点滴滴,如果您对 Python、Java、AI、算法有兴趣,可以关注我的…...
【FFmpeg】avformat_alloc_output_context2函数
【FFmpeg】avformat_alloc_output_context2函数 1.avformat_alloc_output_context21.1 初始化AVFormatContext(avformat_alloc_context)1.2 格式猜测(av_guess_format)1.2.1 遍历可用的fmt(av_muxer_iterate࿰…...
Flask 缓存和信号
Flask-Caching Flask-Caching 是 Flask 的一个扩展,它为 Flask 应用提供了缓存支持。缓存是一种优化技术,可以存储那些费时且不经常改变的运算结果,从而加快应用的响应速度。 一、初始化配置 安装 Flask-Caching 扩展: pip3 i…...
基于weixin小程序农场驿站系统的设计
管理员账户功能包括:系统首页,个人中心,农场资讯管理,用户管理,卖家管理,用户分享管理,分享类型管理,商品信息管理,商品类型管理 开发系统:Windows 架构模式…...
JAVA将List转成Tree树形结构数据和深度优先遍历
引言: 在日常开发中,我们经常会遇到需要将数据库中返回的数据转成树形结构的数据返回,或者需要对转为树结构后的数据绑定层级关系再返回,比如需要统计当前节点下有多少个节点等,因此我们需要封装一个ListToTree的工具类…...
设计模式——开闭、单一职责及里氏替换原则
设计原则是指导软件设计和开发的一系列原则,它们帮助开发者创建出易于维护、扩展和理解的代码。以下是你提到的几个关键设计原则的简要说明: 开闭原则(Open/Closed Principle, OCP): 开闭原则由Bertrand Meyer提出&am…...
代码随想录算法训练营第59天:动态[1]
代码随想录算法训练营第59天:动态 两个字符串的删除操作 力扣题目链接(opens new window) 给定两个单词 word1 和 word2,找到使得 word1 和 word2 相同所需的最小步数,每步可以删除任意一个字符串中的一个字符。 示例: 输入: …...
jvm性能监控常用工具
在java的/bin目录下有许多java自带的工具。 我们常用的有 基础工具 jar:创建和管理jar文件 java:java运行工具,用于运行class文件或jar文件 javac:java的编译器 javadoc:java的API文档生成工具 性能监控和故障处理 jps jstat…...
ISP IC/FPGA设计-第一部分-SC130GS摄像头分析-IIC通信(1)
1.摄像头模组 SC130GS通过一个引脚(SPI_I2C_MODE)选择使用IIC或SPI配置接口,通过查看摄像头模组的原理图,可知是使用IIC接口; 通过手册可知IIC设备地址通过一个引脚控制,查看摄像头模组的原理图ÿ…...
网络编程(Modbus进阶)
思维导图 Modbus RTU(先学一点理论) 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议,由 Modicon 公司(现施耐德电气)于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...
内存分配函数malloc kmalloc vmalloc
内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...
智慧医疗能源事业线深度画像分析(上)
引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...
大话软工笔记—需求分析概述
需求分析,就是要对需求调研收集到的资料信息逐个地进行拆分、研究,从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要,后续设计的依据主要来自于需求分析的成果,包括: 项目的目的…...
(二)原型模式
原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...
技术栈RabbitMq的介绍和使用
目录 1. 什么是消息队列?2. 消息队列的优点3. RabbitMQ 消息队列概述4. RabbitMQ 安装5. Exchange 四种类型5.1 direct 精准匹配5.2 fanout 广播5.3 topic 正则匹配 6. RabbitMQ 队列模式6.1 简单队列模式6.2 工作队列模式6.3 发布/订阅模式6.4 路由模式6.5 主题模式…...
20个超级好用的 CSS 动画库
分享 20 个最佳 CSS 动画库。 它们中的大多数将生成纯 CSS 代码,而不需要任何外部库。 1.Animate.css 一个开箱即用型的跨浏览器动画库,可供你在项目中使用。 2.Magic Animations CSS3 一组简单的动画,可以包含在你的网页或应用项目中。 3.An…...
招商蛇口 | 执笔CID,启幕低密生活新境
作为中国城市生长的力量,招商蛇口以“美好生活承载者”为使命,深耕全球111座城市,以央企担当匠造时代理想人居。从深圳湾的开拓基因到西安高新CID的战略落子,招商蛇口始终与城市发展同频共振,以建筑诠释对土地与生活的…...
土建施工员考试:建筑施工技术重点知识有哪些?
《管理实务》是土建施工员考试中侧重实操应用与管理能力的科目,核心考查施工组织、质量安全、进度成本等现场管理要点。以下是结合考试大纲与高频考点整理的重点内容,附学习方向和应试技巧: 一、施工组织与进度管理 核心目标: 规…...
Qwen系列之Qwen3解读:最强开源模型的细节拆解
文章目录 1.1分钟快览2.模型架构2.1.Dense模型2.2.MoE模型 3.预训练阶段3.1.数据3.2.训练3.3.评估 4.后训练阶段S1: 长链思维冷启动S2: 推理强化学习S3: 思考模式融合S4: 通用强化学习 5.全家桶中的小模型训练评估评估数据集评估细节评估效果弱智评估和民间Arena 分析展望 如果…...
