当前位置: 首页 > news >正文

C++视觉开发 三.缺陷检测

一.距离变换

1.概念和功能

距离变换是一种图像处理技术,用于计算图像中每个像素到最近的零像素(背景像素)的距离。它常用于图像分割、形态学操作和形状分析等领域。它计算图像中每个像素到最近的零像素(背景像素)的距离。这个距离可以是欧氏距离、曼哈顿距离等。距离变换后的图像中,前景像素的值代表它们到最近的背景像素的距离。

具体来说,距离变换在缺陷检测中有以下几个重要作用:

1.前景与背景的分离: 距离变换能够突出前景区域,使其与背景更明显地分离开。前景区域的像素值会表示其到最近背景像素的距离,这样可以更容易地识别和处理前景对象。

2.前景对象的中心检测: 距离变换的结果图像中,距离值最大的像素往往位于前景对象的中心位置。因此,通过距离变换,可以有效地检测出前景对象的中心点,为后续的形态学处理和轮廓检测提供可靠的信息。

3.分水岭算法的预处理: 距离变换常用于分水岭算法的预处理步骤,通过距离变换可以生成标记图像,这些标记可以帮助分水岭算法准确地分割图像中的各个对象。

4.形态学重建: 距离变换可以结合形态学操作进行形态学重建,用于去除图像中的小噪声和伪影,使前景对象更加清晰。

2.函数语法

示例:

// 距离变换
cv::Mat dist_transform;
cv::distanceTransform(op, dist_transform, cv::DIST_L2, 3);
cv::normalize(dist_transform, dist_transform, 0, 1.0, cv::NORM_MINMAX);// 阈值处理
cv::Mat fore;
cv::threshold(dist_transform, fore, 0.3, 1.0, cv::THRESH_BINARY);
fore.convertTo(fore, CV_8U);

1. cv::distanceTransform 

功能:用于计算二值图像中每个前景像素到最近背景像素的距离。

函数语法:

void cv::distanceTransform(InputArray src, OutputArray dst, int distanceType, int maskSize, int dstType = CV_32F);

参数含义
src

输入图像,通常是一个二值图像。

其中非零像素被视为前景,零像素被视为背景。

dst

输出图像,包含每个像素到最近背景像素的距离。

默认情况下,输出图像是一个32位浮点图像(CV_32F)。

distanceType

距离类型,指定距离的计算方式。常用的类型有:

cv::DIST_L1:曼哈顿距离(每个像素的邻居为上下左右四个方向)。

cv::DIST_L2:欧氏距离(每个像素的邻居为周围八个方向)。

cv::DIST_C:棋盘距离(类似于曼哈顿距离,但允许对角线方向移动)

maskSize掩码大小,影响距离计算的精度。可以是3、5或cv::DIST_MASK_PRECISE(在精确距离变换中使用)。常用值为3。
dstType

输出图像的类型。默认值为CV_32F,表示32位浮点图像。

可以更改为其他类型,如CV_8U(8位无符号整数)等。

2.cv::normalize 

功能:用于将数组的值归一化到指定的范围内。它可以应用于图像处理中的多种场景,例如将距离变换的结果归一化到 [0, 1] 或 [0, 255],从而便于可视化和后续处理。

函数语法:

void cv::normalize(
InputArray src, 
OutputArray dst, 
double alpha, 
double beta, 
int norm_type = cv::NORM_L2, 
int dtype = -1, 
InputArray mask = noArray()
);
参数含义
src输入数组或图像
dst输出数组或图像,与输入数组具有相同的大小和类型,或者具有指定的类型。
alpha

归一化后数组中最小值的目标值。

如果 norm_type 是 cv::NORM_MINMAX,这个参数表示归一化后的最小值。

beta

归一化后数组中最大值的目标值。

如果 norm_type 是 cv::NORM_MINMAX,这个参数表示归一化后的最大值。

norm_type

归一化类型。可以是以下之一:

cv::NORM_INF:归一化为无穷范数(最大绝对值)。

cv::NORM_L1:归一化为 L1 范数(绝对值之和)。

cv::NORM_L2:归一化为 L2 范数(平方和的平方根)。

cv::NORM_MINMAX:线性变换,将数组值线性缩放到 [alpha, beta] 范围。

dtype(可选)输出数组的类型。如果为 -1,则输出数组的类型与输入数组相同。
mask (可选)可选的操作掩码。仅对掩码内的元素进行归一化处理。

           只用前5个就够了

3.fore.convertTo

功能:将矩阵转换为另一种数据类型的函数。此函数通常用于图像处理中的数据类型转换,以确保图像处理操作使用正确的数据类型。

函数语法:

void cv::Mat::convertTo(OutputArray m, int rtype, double alpha , double beta)
参数含义
m输出矩阵,类型由 rtype 指定。
rtype输出矩阵的类型。可以是 CV_8U(8 位无符号整数)、CV_32F(32 位浮点数)等。
alpha可选的比例因子,默认值为 1。输出矩阵的每个元素是输入矩阵相应元素乘以 alpha
beta 可选的加数,默认值为 0。输出矩阵的每个元素是输入矩阵相应元素乘以 alpha 再加上 beta

二.缺陷检测

通过计算轮廓面积和最小外接圆的面积比值来判断是否存在缺陷

1.cv::minEnclosingCircle 最小外接圆

功能:找到一个最小的圆,使得圆能够完全包围给定的轮廓。

函数语法:

void cv::minEnclosingCircle(InputArray points, Point2f& center, float& radius);
参数含义
points输入的点集,可以可以是一个点的向量或Mat。
center输出参数,存储最小外接圆的圆心坐标。
radius输出参数,存储最小外接圆的半径。

2.完整代码示例

#include <opencv2/opencv.hpp>
#include <iostream>int main() {// 读取图像cv::Mat o = cv::imread("pill3.jpg", cv::IMREAD_GRAYSCALE);if (o.empty()) {std::cerr << "Could not open or find the image!" << std::endl;return -1;}// 二值化处理cv::Mat binary;cv::threshold(o, binary, 0, 255, cv::THRESH_BINARY + cv::THRESH_OTSU);// 形态学开运算cv::Mat kernel = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(5, 5));cv::Mat op;cv::morphologyEx(binary, op, cv::MORPH_OPEN, kernel, cv::Point(-1, -1), 1);// 距离变换cv::Mat dist_transform;cv::distanceTransform(op, dist_transform, cv::DIST_L2, 3);cv::normalize(dist_transform, dist_transform, 0, 1.0, cv::NORM_MINMAX);// 阈值处理cv::Mat fore;cv::threshold(dist_transform, fore, 0.3, 1.0, cv::THRESH_BINARY);fore.convertTo(fore, CV_8U);// 形态学去噪cv::Mat kernel2 = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(3, 3));cv::Mat op2;cv::morphologyEx(fore, op2, cv::MORPH_OPEN, kernel2, cv::Point(-1, -1), 1);// 提取轮廓std::vector<std::vector<cv::Point>> contours;cv::findContours(op2, contours, cv::RETR_TREE, cv::CHAIN_APPROX_SIMPLE);// 缺陷检测int count = 0;cv::Mat img = o.clone();for (size_t i = 0; i < contours.size(); i++) {cv::Point2f center;float radius;cv::minEnclosingCircle(contours[i], center, radius);double area = cv::contourArea(contours[i]);double area_circle = 3.14 * radius * radius;if (area / area_circle >= 0.5) {cv::putText(img, "OK", center, cv::FONT_HERSHEY_COMPLEX, 1, cv::Scalar(255, 255, 255), 2);}else {cv::putText(img, "bad", center, cv::FONT_HERSHEY_COMPLEX, 1, cv::Scalar(255, 255, 255), 2);}count++;}cv::putText(img, "sum=" + std::to_string(count), cv::Point(20, 30), cv::FONT_HERSHEY_COMPLEX, 1, cv::Scalar(255, 255, 255));// 显示结果cv::imshow("result", img);cv::waitKey(0);cv::destroyAllWindows();return 0;
}

结果如图:

相关文章:

C++视觉开发 三.缺陷检测

一.距离变换 1.概念和功能 距离变换是一种图像处理技术&#xff0c;用于计算图像中每个像素到最近的零像素&#xff08;背景像素&#xff09;的距离。它常用于图像分割、形态学操作和形状分析等领域。它计算图像中每个像素到最近的零像素&#xff08;背景像素&#xff09;的距…...

使用 Amazon Bedrock Converse API 简化大语言模型交互

本文将介绍如何使用 Amazon Bedrock 最新推出的 Converse API&#xff0c;来简化与各种大型语言模型的交互。该 API 提供了一致的接口&#xff0c;可以无缝调用各种大型模型&#xff0c;从而消除了需要自己编写复杂辅助功能函数的重复性工作。文中示例将展示它相比于以前针对每…...

第二十一章 函数(Python)

文章目录 前言一、定义函数二、函数参数三、参数类型四、函数返回值五、函数类型1、无参数&#xff0c;无返回值2、无参数&#xff0c;有返回值3、有参数&#xff0c;无返回值4、有参数&#xff0c;有返回值 六、函数的嵌套七、全局变量和局部变量1、局部变量2、全局变量 前言 …...

使用pyqt5编写一个七彩时钟

使用pyqt5编写一个七彩时钟 效果代码解析定义 RainbowClockWindow 类初始化用户界面显示时间方法 完整代码 在这篇博客中&#xff0c;我们将使用 PyQt5 创建一个简单的七彩数字时钟。 效果 代码解析 定义 RainbowClockWindow 类 class RainbowClockWindow(QMainWindow):def _…...

【Linux】:命令行参数

朋友们、伙计们&#xff0c;我们又见面了&#xff0c;本期来给大家解读一下有关Linux命令行参数的相关知识点&#xff0c;如果看完之后对你有一定的启发&#xff0c;那么请留下你的三连&#xff0c;祝大家心想事成&#xff01; C 语 言 专 栏&#xff1a;C语言&#xff1a;从入…...

高考假期预习指南,送给迷茫的你

高考结束&#xff0c;离别了熟悉的地方&#xff0c;踏上远方。 你&#xff0c;&#xff0c;迷茫吗&#xff1f; 大学是什么&#xff1f;到了大学我该怎样学习&#xff1f;真像网上说的毕业即失业吗&#xff1f; 大学是一个让你学会一技之长的地方&#xff0c;到了大学找到自…...

独孤思维:负债了,还可以翻身吗

01 其实独孤早年也负债。 负债并不可怕。 可怕的是因为负债而催生的想要快速赚钱的心态。 越是有这种心态&#xff0c;越是不可能赚到钱。 相反&#xff0c;可能会让你陷入恶性循环中。 盲目付费&#xff0c;盲目寄希望于某个项目或者某个人。 当成唯一的救命稻草。 这…...

SwiftUI八与UIKIT交互

代码下载 SwiftUI可以在苹果全平台上无缝兼容现有的UI框架。例如&#xff0c;可以在SwiftUI视图中嵌入UIKit视图或UIKit视图控制器&#xff0c;反过来在UIKit视图或UIKit视图控制器中也可以嵌入SwiftUI视图。 本文展示如何把landmark应用的主页混合使用UIPageViewController和…...

RedHat9 | 内部YUM本地源服务器搭建

服务器参数 标识公司内部YUM服务器主机名yum-server网络信息192.168.37.1/24网络属性静态地址主要操作用户root 一、基础环境信息配置 修改主机名 [rootyum-server ~]# hostnamectl hostname yum-server添加网络信息 [rootyum-server ~]# nmcli connection modify ens160 …...

无偏归一化自适应心电ECG信号降噪方法(MATLAB)

心电信号作为一种生物信号&#xff0c;含有大量的临床应用价值的信息&#xff0c;在现代生命医学研究中占有重要的地位。但心电信号低频、低幅值的特点&#xff0c;使其在采集和传输的过程中经常受到噪声的干扰&#xff0c;使心电波形严重失真&#xff0c;从而影响后续的病情分…...

AI基本概念(人工智能、机器学习、深度学习)

人工智能 、 机器学习、 深度学习的概念和关系 人工智能 &#xff08;Artificial Intelligence&#xff09;AI- 机器展现出人类智慧机器学习 &#xff08;Machine Learning) ML, 达到人工智能的方法深度学习 &#xff08;Deep Learning&#xff09;DL,执行机器学习的技术 从范围…...

LabVIEW幅频特性测试系统

使用LabVIEW软件开发的幅频特性测试系统。该系统整合了Agilent 83732B信号源与Agilent 8563EC频谱仪&#xff0c;通过LabVIEW编程实现自动控制和数据处理&#xff0c;提供了成本效益高、操作简便的解决方案&#xff0c;有效替代了昂贵的专用仪器&#xff0c;提高了测试效率和设…...

校园卡手机卡怎么注销?

校园手机卡的注销流程可以根据不同的运营商和具体情况有所不同&#xff0c;但一般来说&#xff0c;以下是注销校园手机卡的几种常见方式&#xff0c;我将以分点的方式详细解释&#xff1a; 一、线上注销&#xff08;通过手机APP或官方网站&#xff09; 下载并打开对应运营商的…...

logback自定义规则脱敏

自定义规则conversionRule public class LogabckMessageConverter extends MessageConverter {Overridepublic String convert(ILoggingEvent event) {String msg event.getMessage();if ("INFO".equals(event.getLevel().toString())) {msg .....脱敏实现}return …...

高效批量复制与覆盖:一键实现文件管理,轻松应对同名文件,简化工作流程

在数字时代&#xff0c;我们每天都在与海量的文件和数据打交道。你是否曾经遇到过这样的情况&#xff1a;需要批量复制文件到指定文件夹&#xff0c;但一遇到同名文件就头疼不已&#xff0c;要么手动一个个确认覆盖&#xff0c;要么冒着数据丢失的风险直接操作&#xff1f;别担…...

vue3中使用Antv G6渲染树形结构并支持节点增删改

写在前面 在一些管理系统中&#xff0c;会对组织架构、级联数据等做一些管理&#xff0c;你会怎么实现呢&#xff1f;在经过调研很多插件之后决定使用 Antv G6 实现&#xff0c;文档也比较清晰&#xff0c;看看怎么实现吧&#xff0c;先来看看效果图。点击在线体验 实现的功能…...

【PB案例学习笔记】-26制作一个带浮动图标的工具栏

写在前面 这是PB案例学习笔记系列文章的第26篇&#xff0c;该系列文章适合具有一定PB基础的读者。 通过一个个由浅入深的编程实战案例学习&#xff0c;提高编程技巧&#xff0c;以保证小伙伴们能应付公司的各种开发需求。 文章中设计到的源码&#xff0c;小凡都上传到了gite…...

反向沙箱技术:安全隔离上网

在信息化建设不断深化的今天&#xff0c;业务系统的安全性和稳定性成为各公司和相关部门关注的焦点。面对日益复杂的网络威胁&#xff0c;传统的安全防护手段已难以满足需求。深信达反向沙箱技术&#xff0c;以其独特的设计和强大的功能&#xff0c;成为保障政务系统信息安全的…...

前端在for循环中使用Element-plus el-select中的@click.native动态传参

<el-table ref"table" :data"editTableVariables" cell-dblclick"handleRowDblClick" style"width: 100%" > <!-- el-table-column: 表格列组件&#xff0c;定义每列的展示内容和属性 --><el-table-column prop&q…...

Oracle SQL - CONNECT BY语句Where条件中不能使用OR?[已解决]

数据 SQL> SELECT * FROM demo_a;CUSTOMER TOTAL ---------- ---------- A 100200SQL> SELECT * FROM demo_b;CUSTOMER RN QTY ---------- ---------- ---------- A 1 30 A 2 …...

XCTF-web-easyupload

试了试php&#xff0c;php7&#xff0c;pht&#xff0c;phtml等&#xff0c;都没有用 尝试.user.ini 抓包修改将.user.ini修改为jpg图片 在上传一个123.jpg 用蚁剑连接&#xff0c;得到flag...

C++:std::is_convertible

C++标志库中提供is_convertible,可以测试一种类型是否可以转换为另一只类型: template <class From, class To> struct is_convertible; 使用举例: #include <iostream> #include <string>using namespace std;struct A { }; struct B : A { };int main…...

Appium+python自动化(十六)- ADB命令

简介 Android 调试桥(adb)是多种用途的工具&#xff0c;该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具&#xff0c;其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利&#xff0c;如安装和调试…...

从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路

进入2025年以来&#xff0c;尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断&#xff0c;但全球市场热度依然高涨&#xff0c;入局者持续增加。 以国内市场为例&#xff0c;天眼查专业版数据显示&#xff0c;截至5月底&#xff0c;我国现存在业、存续状态的机器人相关企…...

HTML 列表、表格、表单

1 列表标签 作用&#xff1a;布局内容排列整齐的区域 列表分类&#xff1a;无序列表、有序列表、定义列表。 例如&#xff1a; 1.1 无序列表 标签&#xff1a;ul 嵌套 li&#xff0c;ul是无序列表&#xff0c;li是列表条目。 注意事项&#xff1a; ul 标签里面只能包裹 li…...

论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)

笔记整理&#xff1a;刘治强&#xff0c;浙江大学硕士生&#xff0c;研究方向为知识图谱表示学习&#xff0c;大语言模型 论文链接&#xff1a;http://arxiv.org/abs/2407.16127 发表会议&#xff1a;ISWC 2024 1. 动机 传统的知识图谱补全&#xff08;KGC&#xff09;模型通过…...

新能源汽车智慧充电桩管理方案:新能源充电桩散热问题及消防安全监管方案

随着新能源汽车的快速普及&#xff0c;充电桩作为核心配套设施&#xff0c;其安全性与可靠性备受关注。然而&#xff0c;在高温、高负荷运行环境下&#xff0c;充电桩的散热问题与消防安全隐患日益凸显&#xff0c;成为制约行业发展的关键瓶颈。 如何通过智慧化管理手段优化散…...

【Android】Android 开发 ADB 常用指令

查看当前连接的设备 adb devices 连接设备 adb connect 设备IP 断开已连接的设备 adb disconnect 设备IP 安装应用 adb install 安装包的路径 卸载应用 adb uninstall 应用包名 查看已安装的应用包名 adb shell pm list packages 查看已安装的第三方应用包名 adb shell pm list…...

jmeter聚合报告中参数详解

sample、average、min、max、90%line、95%line,99%line、Error错误率、吞吐量Thoughput、KB/sec每秒传输的数据量 sample&#xff08;样本数&#xff09; 表示测试中发送的请求数量&#xff0c;即测试执行了多少次请求。 单位&#xff0c;以个或者次数表示。 示例&#xff1a;…...

怎么让Comfyui导出的图像不包含工作流信息,

为了数据安全&#xff0c;让Comfyui导出的图像不包含工作流信息&#xff0c;导出的图像就不会拖到comfyui中加载出来工作流。 ComfyUI的目录下node.py 直接移除 pnginfo&#xff08;推荐&#xff09;​​ 在 save_images 方法中&#xff0c;​​删除或注释掉所有与 metadata …...