当前位置: 首页 > news >正文

王佩丰 Excel 基础二十四讲——目录


前言

跟着B站学习王佩丰 Excel 基础教程,本文章为索引目录
课程传送门:视频地址——点击前往


王佩丰Excel基础教程24讲完整版
第一讲:认识 Excel
第二讲:Excel 单元格格式设置
第三讲:查找替换定位(未编辑)
第四讲:排序与选择(未编辑)
第五讲:分类汇总与数据有效性(未编辑)
第六讲:认识数据透视表(未编辑)
第七讲:认识函数与公式(未编辑)
第八讲:IF 函数逻辑判断(未编辑)
第九讲:COUNTIF 函数(未编辑)
第十讲:SUMIF 函数(未编辑)
第十一讲:Vlookup 函数(未编辑)
第十二讲:Match + Index(未编辑)
第十三讲:邮件合并(未编辑)
第十四讲:日期函数(未编辑)
第十五讲:条件格式与公式(未编辑)
第十六讲:简单文本函数(未编辑)
第十七讲:数字函数(未编辑)
第十八讲:Vlookup 函数与数组(未编辑)
第十九讲:indirect 函数(未编辑)
第二十讲:图表基础(未编辑)
第二十一讲:动态图表(未编辑)
第二十二讲:甘特图与动态甘特图(未编辑)
第二十三讲:excel 图表与 PPT(未编辑)
第二十四讲:宏表函数(未编辑)


总结

以上就是本章要讲的内容,本文仅仅简单复述了老师讲课的文本内容,内容有误麻烦联系。

相关文章:

王佩丰 Excel 基础二十四讲——目录

前言 跟着B站学习王佩丰 Excel 基础教程,本文章为索引目录 课程传送门:视频地址——点击前往 王佩丰Excel基础教程24讲完整版 第一讲:认识 Excel 第二讲:Excel 单元格格式设置 第三讲:查找替换定位(未编辑…...

Qt扫盲-QRect矩形描述类

QRect矩形描述总结 一、概述二、常用函数1. 移动类2. 属性函数3. 判断4. 比较计算 三、渲染三、坐标 一、概述 QRect类使用整数精度在平面中定义一个矩形。在绘图的时候经常使用,作为一个二维的参数描述类。 一个矩形主要有两个重要属性,一个是坐标&am…...

Android系统adb shell怎么执行checksum 来判断文件是否变更?

在Android系统中,通过ADB(Android Debug Bridge)shell执行checksum(校验和)来检查文件是否变更是一个常见的需求,尤其是在自动化测试或确保应用文件未被篡改的场景中。在Linux和Android shell中&#xff0c…...

JS中的上下文

一.执行上下文的概念: 执行上下文简称上下文。变量或者函数的上下文决定了它们可以访问哪些数据,以及它们的行为。每一个上下文都具有一个关联的变量对象,而这个上下文中定义的所有变量和函数都存在于这个对象上。 二.JS中上下文的执行机制&a…...

【深度学习】注意力机制

https://blog.csdn.net/weixin_43334693/article/details/130189238 https://blog.csdn.net/weixin_47936614/article/details/130466448 https://blog.csdn.net/qq_51320133/article/details/138305880 注意力机制:在处理信息的时候,会将注意力放在需要…...

安卓开发自定义时间日期显示组件

安卓开发自定义时间日期显示组件 问题背景 实现时间和日期显示,左对齐和对齐两种效果,如下图所示: 问题分析 自定义view实现一般思路: (1)自定义一个View (2)编写values/attrs.…...

IT行业入门,如何假期逆袭,实现抢跑

目录 前言 1.IT行业领域分类 2.基础课程预习指南 3.技术学习路线 4.学习资源推荐 结束语 前言 IT(信息技术)行业是一个非常广泛和多样化的领域,它包括了许多不同的专业领域和职业路径。如果要进军IT行业,我们应该要明确自己…...

Pyramid 中混合认证策略

1. 问题背景 在一个使用 Pyramid 框架开发的应用程序中,需要同时处理 HTML 内容的显示和 JSON API 的请求。对于 HTML 内容,使用了 AuthTktAuthenticationPolicy 进行身份验证和 ACLAuthorizationPolicy 进行授权。当用户成功登录后,会在浏览…...

深度学习经典检测方法概述

一、深度学习经典检测方法 two-stage(两阶段):Faster-rcnn Mask-Rcnn系列 one-stage(单阶段):YOLO系列 1. one-stage 最核心的优势:速度非常快,适合做实时检测任务! 但是…...

<sa8650>sa8650 qcxserver-之-摄像头传感器VB56G4A驱动开发<1>

<sa8650>sa8650 qcxserver-之-摄像头传感器VB56G4A驱动开发 <1> 一、前言二、QCX架构三、QCX 传感器驱动程序定制开发3.1 sensor硬件接口3.2 sensor配置文件3.2.1 cameraconfig.c3.2.2 cameraconfigsa8650_water.c3.2.3 新增编译MK3.2.4 参数解析3.2.4.1 struct Camera…...

推荐8款超实用的ComfyUI绘画插件,帮助我们的AI绘画质量和效率提升几个档次!

前言 大家在使用SD绘画过程中&#xff0c;想必见识到了插件的强大功能&#xff0c;本身纯净版的SD界面是相对简洁的&#xff0c;但是搭配了各种插件后&#xff0c;界面标签栏会增加很多&#xff0c;相应的功能也增加了。 从简单的中文界面翻译插件&#xff0c;到强大的contro…...

MATLAB-振动问题:两自由度耦合系统自由振动

一、基本理论 二、MATLAB实现 以下是两自由度耦合系统自由振动质量块振动过程动画显示的MATLAB程序。 clear; clc; close allx0 1; D1 40; D12 8; D2 D1; m1 1; omega0 sqrt(D1/m1); k1 D12 / D1; k2 D12 / D2; k sqrt(k1 * k2); omegazh omega0 * sqrt(1 k); omeg…...

人工智能-NLP简单知识汇总01

人工智能-NLP简单知识汇总01 1.1自然语言处理的基本概念 自然语言处理难点&#xff1a; 语音歧义句子切分歧义词义歧义结构歧义代指歧义省略歧义语用歧义 总而言之&#xff1a;&#xff01;&#xff01;语言无处不歧义 1.2自然语言处理的基本范式 1.2.1基于规则的方法 通…...

Spring Boot中的异步编程技巧

Spring Boot中的异步编程技巧 大家好&#xff0c;我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编&#xff0c;也是冬天不穿秋裤&#xff0c;天冷也要风度的程序猿&#xff01;今天我们将探讨在Spring Boot应用程序中如何使用异步编程技巧&#xff0c;以提升性…...

深度解密Spark性能优化之道

课程介绍 课程通过实战案例解析和性能调优技巧的讲解&#xff0c;帮助学员提升大数据处理系统的性能和效率。课程内容涵盖了Spark性能调优的各个方面&#xff0c;包括内存管理、并行度设置、数据倾斜处理、Shuffle调优、资源配置等关键技术和策略。学员将通过实际案例的演示和…...

在U盘/移动硬盘上安装热插拔式Ubuntu系统,并将Docker目录挂载到NTFS硬盘

Windows10的WSL2的确给开发人员带来了很多方便&#xff0c;但是仍然有很多缺点。比如&#xff1a;太占系统内存&#xff1b;有些软件无法在WSL2中编译成功&#xff1b;相当于虚拟机&#xff0c;性能不如原装系统。 装双系统&#xff0c;相信大家都不陌生&#xff0c;但它会占用…...

商城小程序论文(设计)开题报告

一、课题的背景和意义 近些年来&#xff0c;随着移动互联网巅峰时期的来临&#xff0c;互联网产业逐渐趋于“小、轻、微”的方向发展&#xff0c;符合轻应用时代特点的各类技术受到了不同领域的广泛关注。在诸多产品中&#xff0c;被誉为“运行着程序的网站”之名的微信小程序…...

15. Java的 CAS 操作原理

1. 前言 本节内容主要是对 CAS 操作原理进行讲解&#xff0c;由于 CAS 涉及到了并发编程包的使用&#xff0c;本节课程只对 CAS 的原理问题进行讲解&#xff0c;有助于同学后续对并发编程工具使用的学习。本节具体内容点如下&#xff1a; 了解 CAS 的概念&#xff0c;这是本节…...

修改element-ui日期下拉框datetimePicker的背景色样式

如图&#xff1a; 1、修改背景色 .el-date-picker.has-sidebar.has-time { background: #04308D; color: #fff; border: 1px solid #326AFF } .el-date-picker__header-label { color: #ffffff; } .el-date-table th { color: #fff; } .el-icon-d-arrow-left:before { color: …...

Linux—— 逻辑运算符,压缩和解压缩

- -a&#xff1a; and 逻辑与 - -o&#xff1a; or 逻辑或 - -not&#xff1a; not 逻辑非 - 优先级&#xff1a;与>或>非 shell [rootserver ~]# find / -size 10k -a -size -50k [rootserver ~]# find /etc -name "e*" -o -name "f*"…...

eNSP-Cloud(实现本地电脑与eNSP内设备之间通信)

说明&#xff1a; 想象一下&#xff0c;你正在用eNSP搭建一个虚拟的网络世界&#xff0c;里面有虚拟的路由器、交换机、电脑&#xff08;PC&#xff09;等等。这些设备都在你的电脑里面“运行”&#xff0c;它们之间可以互相通信&#xff0c;就像一个封闭的小王国。 但是&#…...

C++_核心编程_多态案例二-制作饮品

#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为&#xff1a;煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例&#xff0c;提供抽象制作饮品基类&#xff0c;提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...

【Oracle APEX开发小技巧12】

有如下需求&#xff1a; 有一个问题反馈页面&#xff0c;要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据&#xff0c;方便管理员及时处理反馈。 我的方法&#xff1a;直接将逻辑写在SQL中&#xff0c;这样可以直接在页面展示 完整代码&#xff1a; SELECTSF.FE…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)

0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述&#xff0c;后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作&#xff0c;其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...

第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词

Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵&#xff0c;其中每行&#xff0c;每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid&#xff0c;其中有多少个 3 3 的 “幻方” 子矩阵&am…...

如何在最短时间内提升打ctf(web)的水平?

刚刚刷完2遍 bugku 的 web 题&#xff0c;前来答题。 每个人对刷题理解是不同&#xff0c;有的人是看了writeup就等于刷了&#xff0c;有的人是收藏了writeup就等于刷了&#xff0c;有的人是跟着writeup做了一遍就等于刷了&#xff0c;还有的人是独立思考做了一遍就等于刷了。…...

OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 在 GPU 上对图像执行 均值漂移滤波&#xff08;Mean Shift Filtering&#xff09;&#xff0c;用于图像分割或平滑处理。 该函数将输入图像中的…...

【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习

禁止商业或二改转载&#xff0c;仅供自学使用&#xff0c;侵权必究&#xff0c;如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...

Qemu arm操作系统开发环境

使用qemu虚拟arm硬件比较合适。 步骤如下&#xff1a; 安装qemu apt install qemu-system安装aarch64-none-elf-gcc 需要手动下载&#xff0c;下载地址&#xff1a;https://developer.arm.com/-/media/Files/downloads/gnu/13.2.rel1/binrel/arm-gnu-toolchain-13.2.rel1-x…...

机器学习的数学基础:线性模型

线性模型 线性模型的基本形式为&#xff1a; f ( x ) ω T x b f\left(\boldsymbol{x}\right)\boldsymbol{\omega}^\text{T}\boldsymbol{x}b f(x)ωTxb 回归问题 利用最小二乘法&#xff0c;得到 ω \boldsymbol{\omega} ω和 b b b的参数估计$ \boldsymbol{\hat{\omega}}…...