当前位置: 首页 > news >正文

面试题(二十二)消息队列与搜索引擎

2. 消息队列

2.1 MQ有什么用?

参考答案

消息队列有很多使用场景,比较常见的有3个:解耦、异步、削峰。

  1. 解耦:传统的软件开发模式,各个模块之间相互调用,数据共享,每个模块都要时刻关注其他模块的是否更改或者是否挂掉等等,使用消息队列,可以避免模块之间直接调用,将所需共享的数据放在消息队列中,对于新增业务模块,只要对该类消息感兴趣,即可订阅该类消息,对原有系统和业务没有任何影响,降低了系统各个模块的耦合度,提高了系统的可扩展性。
  2. 异步:消息队列提供了异步处理机制,在很多时候应用不想也不需要立即处理消息,允许应用把一些消息放入消息中间件中,并不立即处理它,在之后需要的时候再慢慢处理。
  3. 削峰:在访问量骤增的场景下,需要保证应用系统的平稳性,但是这样突发流量并不常见,如果以这类峰值的标准而投放资源的话,那无疑是巨大的浪费。使用消息队列能够使关键组件支撑突发访问压力,不会因为突发的超负荷请求而完全崩溃。消息队列的容量可以配置的很大,如果采用磁盘存储消息,则几乎等于“无限”容量,这样一来,高峰期的消息可以被积压起来,在随后的时间内进行平滑的处理完成,而不至于让系统短时间内无法承载而导致崩溃。在电商网站的秒杀抢购这种突发性流量很强的业务场景中,消息队列的强大缓冲能力可以很好的起到削峰作用。

2.2 说一说生产者与消费者模式

参考答案

所谓生产者-消费者问题,实际上主要是包含了两类线程。一种是生产者线程用于生产数据,另一种是消费者线程用于消费数据,为了解耦生产者和消费者的关系,通常会采用共享的数据区域,就像是一个仓库。生产者生产数据之后直接放置在共享数据区中,并不需要关心消费者的行为。而消费者只需要从共享数据区中去获取数据,就不再需要关心生产者的行为。但是,这个共享数据区域中应该具备这样的线程间并发协作的功能:

  1. 如果共享数据区已满的话,阻塞生产者继续生产数据放置入内;
  2. 如果共享数据区为空的话,阻塞消费者继续消费数据。

在Java语言中,实现生产者消费者问题时,可以采用三种方式:

  1. 使用 Object 的 wait/notify 的消息通知机制;
  2. 使用 Lock 的 Condition 的 await/signal 的消息通知机制;
  3. 使用 BlockingQueue 实现。

2.3 消息队列如何保证顺序消费?

参考答案

在生产中经常会有一些类似报表系统这样的系统,需要做 MySQL 的 binlog 同步。比如订单系统要同步订单表的数据到大数据部门的 MySQL 库中用于报表统计分析,通常的做法是基于 Canal 这样的中间件去监听订单数据库的 binlog,然后把这些 binlog 发送到 MQ 中,再由消费者从 MQ 中获取 binlog 落地到大数据部门的 MySQL 中。

在这个过程中,可能会有对某个订单的增删改操作,比如有三条 binlog 执行顺序是增加、修改、删除。消费者愣是换了顺序给执行成删除、修改、增加,这样能行吗?肯定是不行的。不同的消息队列产品,产生消息错乱的原因,以及解决方案是不同的。下面我们以RabbitMQ、Kafka、RocketMQ为例,来说明保证顺序消费的办法。

RabbitMQ:

对于 RabbitMQ 来说,导致上面顺序错乱的原因通常是消费者是集群部署,不同的消费者消费到了同一订单的不同的消息。如消费者A执行了增加,消费者B执行了修改,消费者C执行了删除,但是消费者C执行比消费者B快,消费者B又比消费者A快,就会导致消费 binlog 执行到数据库的时候顺序错乱,本该顺序是增加、修改、删除,变成了删除、修改、增加。

RabbitMQ 的问题是由于不同的消息都发送到了同一个 queue 中,多个消费者都消费同一个 queue 的消息。解决这个问题,我们可以给 RabbitMQ 创建多个 queue,每个消费者固定消费一个 queue 的消息,生产者发送消息的时候,同一个订单号的消息发送到同一个 queue 中,由于同一个 queue 的消息是一定会保证有序的,那么同一个订单号的消息就只会被一个消费者顺序消费,从而保证了消息的顺序性。

Kafka:

对于 Kafka 来说,一个 topic 下同一个 partition 中的消息肯定是有序的,生产者在写的时候可以指定一个 key,通过我们会用订单号作为 key,这个 key 对应的消息都会发送到同一个 partition 中,所以消费者消费到的消息也一定是有序的。

那么为什么 Kafka 还会存在消息错乱的问题呢?问题就出在消费者身上。通常我们消费到同一个 key 的多条消息后,会使用多线程技术去并发处理来提高消息处理速度,否则一条消息的处理需要耗时几十 毫秒,1 秒也就只能处理几十条消息,吞吐量就太低了。而多线程并发处理的话,binlog 执行到数据库的时候就不一定还是原来的顺序了。

Kafka 从生产者到消费者消费消息这一整个过程其实都是可以保证有序的,导致最终乱序是由于消费者端需要使用多线程并发处理消息来提高吞吐量,比如消费者消费到了消息以后,开启 32 个线程处理消息,每个线程线程处理消息的快慢是不一致的,所以才会导致最终消息有可能不一致。

所以对于 Kafka 的消息顺序性保证,其实我们只需要保证同一个订单号的消息只被同一个线程处理的就可以了。由此我们可以在线程处理前增加个内存队列,每个线程只负责处理其中一个内存队列的消息,同一个订单号的消息发送到同一个内存队列中即可。

RocketMQ:

对于 RocketMQ 来说,每个 Topic 可以指定多个 MessageQueue,当我们写入消息的时候,会把消息均匀地分发到不同的 MessageQueue 中,比如同一个订单号的消息,增加 binlog 写入到 MessageQueue1 中,修改 binlog 写入到 MessageQueue2 中,删除 binlog 写入到 MessageQueue3 中。

但是当消费者有多台机器的时候,会组成一个 Consumer Group,Consumer Group 中的每台机器都会负责消费一部分 MessageQueue 的消息,所以可能消费者A消费了 MessageQueue1 的消息执行增加操作,消费者B消费了 MessageQueue2 的消息执行修改操作,消费者C消费了 MessageQueue3 的消息执行删除操作,但是此时消费 binlog 执行到数据库的时候就不一定是消费者A先执行了,有可能消费者C先执行删除操作,因为几台消费者是并行执行,是不能够保证他们之间的执行顺序的。

RocketMQ 的消息乱序是由于同一个订单号的 binlog 进入了不同的 MessageQueue,进而导致一个订单的 binlog 被不同机器上的 Consumer 处理。

要解决 RocketMQ 的乱序问题,我们只需要想办法让同一个订单的 binlog 进入到同一个 MessageQueue 中就可以了。因为同一个 MessageQueue 内的消息是一定有序的,一个 MessageQueue 中的消息只能交给一个 Consumer 来进行处理,所以 Consumer 消费的时候就一定会是有序的。

2.4 消息队列如何保证消息不丢?

参考答案

丢数据一般分为两种,一种是mq把消息丢了,一种就是消费时将消息丢了。下面从rabbitmq和kafka分别说一下,丢失数据的场景。

RabbitMQ:

RabbitMQ丢失消息分为如下几种情况:

  1. 生产者丢消息:生产者将数据发送到RabbitMQ的时候,可能在传输过程中因为网络等问题而将数据弄丢了。
  2. RabbitMQ自己丢消息:如果没有开启RabbitMQ的持久化,那么RabbitMQ一旦重启数据就丢了。所以必须开启持久化将消息持久化到磁盘,这样就算RabbitMQ挂了,恢复之后会自动读取之前存储的数据,一般数据不会丢失。除非极其罕见的情况,RabbitMQ还没来得及持久化自己就挂了,这样可能导致一部分数据丢失。
  3. 消费端丢消息:主要是因为消费者消费时,刚消费到还没有处理,结果消费者就挂了,这样你重启之后,RabbitMQ就认为你已经消费过了,然后就丢了数据。

针对上述三种情况,RabbitMQ可以采用如下方式避免消息丢失:

  1. 生产者丢消息:事务机制是同步的,你提交了一个事物之后会阻塞住,但是confirm机制是异步的,发送消息之后可以接着发送下一个消息,然后RabbitMQ会回调告知成功与否。 一般在生产者这块避免丢失,都是用confirm机制。
    • 可以选择使用RabbitMQ提供是事务功能,就是生产者在发送数据之前开启事务,然后发送消息,如果消息没有成功被RabbitMQ接收到,那么生产者会受到异常报错,这时就可以回滚事务,然后尝试重新发送。如果收到了消息,那么就可以提交事务。这种方式有明显的缺点,即RabbitMQ事务开启后,就会变为同步阻塞操作,生产者会阻塞等待是否发送成功,太耗性能会造成吞吐量的下降。
    • 可以开启confirm模式。在生产者那里设置开启了confirm模式之后,每次写的消息都会分配一个唯一的id,然后如何写入了RabbitMQ之中,RabbitMQ会给你回传一个ack消息,告诉你这个消息发送OK了。如果RabbitMQ没能处理这个消息,会回调你一个nack接口,告诉你这个消息失败了,你可以进行重试。而且你可以结合这个机制知道自己在内存里维护每个消息的id,如果超过一定时间还没接收到这个消息的回调,那么你可以进行重发。
  1. RabbitMQ自己丢消息:设置消息持久化到磁盘,设置持久化有两个步骤:而且持久化可以跟生产的confirm机制配合起来,只有消息持久化到了磁盘之后,才会通知生产者ack,这样就算是在持久化之前RabbitMQ挂了,数据丢了,生产者收不到ack回调也会进行消息重发。
    • 创建queue的时候将其设置为持久化的,这样就可以保证RabbitMQ持久化queue的元数据,但是不会持久化queue里面的数据。
    • 发送消息的时候讲消息的deliveryMode设置为2,这样消息就会被设为持久化方式,此时RabbitMQ就会将消息持久化到磁盘上。 必须要同时开启这两个才可以。
  1. 消费端丢消息:使用RabbitMQ提供的ack机制,首先关闭RabbitMQ的自动ack,然后每次在确保处理完这个消息之后,在代码里手动调用ack。这样就可以避免消息还没有处理完就ack。

Kafka:

Kafka丢失消息分为如下几种情况:

  1. 生产者丢消息:生产者没有设置相应的策略,发送过程中丢失数据。
  2. Kafka自己丢消息:比较常见的一个场景,就是Kafka的某个broker宕机了,然后重新选举partition的leader时。如果此时follower还没来得及同步数据,leader就挂了,然后某个follower成为了leader,它就少了一部分数据。
  3. 消费端丢消息:消费者消费到了这个数据,然后消费之自动提交了offset,让Kafka知道你已经消费了这个消息,当你准备处理这个消息时,自己挂掉了,那么这条消息就丢了。

针对上述三种情况,Kafka可以采用如下方式避免消息丢失:

  1. 生产者丢消息:关闭自动提交offset,在自己处理完毕之后手动提交offset,这样就不会丢失数据。
  2. Kafka自己丢消息:一般要求设置4个参数来保证消息不丢失:
    • 给topic设置 replication.factor 参数,这个值必须大于1,表示要求每个partition必须至少有2个副本。
    • 在kafka服务端设置 min.isync.replicas 参数,这个值必须大于1,表示 要求一个leader至少感知到有至少一个follower在跟自己保持联系正常同步数据,这样才能保证leader挂了之后还有一个follower。
    • 在生产者端设置 acks=all ,表示 要求每条数据,必须是写入所有replica副本之后,才能认为是写入成功了。
    • 在生产者端设置 retries=MAX (很大的一个值),表示这个是要求一旦写入事变,就无限重试。
  1. 消费端丢消息:如果按照上面设置了ack=all,则一定不会丢失数据,要求是,你的leader接收到消息,所有的follower都同步到了消息之后,才认为本次写成功了。如果没满足这个条件,生产者会自动不断的重试,重试无限次。

2.5 消息队列如何保证不重复消费?

参考答案

先大概说一说可能会有哪些重复消费的问题。首先就是比如rabbitmq、rocketmq、kafka,都有可能会出现消费重复消费的问题,正常。因为这问题通常不是mq自己保证的,是给你保证的。然后我们挑一个kafka来举个例子,说说怎么重复消费吧。

kafka实际上有个offset的概念,就是每个消息写进去,都有一个offset,代表他的序号,然后consumer消费了数据之后,每隔一段时间,会把自己消费过的消息的offset提交一下,代表我已经消费过了,下次我要是重启啥的,你就让我继续从上次消费到的offset来继续消费吧。

但是凡事总有意外,比如我们之前生产经常遇到的,就是你有时候重启系统,看你怎么重启了,如果碰到点着急的,直接kill进程了,再重启。这会导致consumer有些消息处理了,但是没来得及提交offset,尴尬了。重启之后,少数消息会再次消费一次。

其实重复消费不可怕,可怕的是你没考虑到重复消费之后,怎么保证幂等性。举个例子,假设你有个系统,消费一条往数据库里插入一条,要是你一个消息重复两次,你不就插入了两条,这数据不就错了?但是你要是消费到第二次的时候,自己判断一下已经消费过了,直接扔了,不就保留了一条数据?

一条数据重复出现两次,数据库里就只有一条数据,这就保证了系统的幂等性幂等性。通俗点说,就一个数据,或者一个请求,给你重复来多次,你得确保对应的数据是不会改变的,不能出错。

想要保证不重复消费,其实还要结合业务来思考,这里给几个思路:

  1. 比如你拿个数据要写库,你先根据主键查一下,如果这数据都有了,你就别插入了,update一下。
  2. 比如你是写redis,那没问题了,反正每次都是set,天然幂等性。
  3. 比如你不是上面两个场景,那做的稍微复杂一点,你需要让生产者发送每条数据的时候,里面加一个全局唯一的id,类似订单id之类的东西,然后你这里消费到了之后,先根据这个id去比如redis里查一下,之前消费过吗?如果没有消费过,你就处理,然后这个id写redis。如果消费过了,那你就别处理了,保证别重复处理相同的消息即可。

还有比如基于数据库的唯一键来保证重复数据不会重复插入多条,我们之前线上系统就有这个问题,就是拿到数据的时候,每次重启可能会有重复,因为kafka消费者还没来得及提交offset,重复数据拿到了以后我们插入的时候,因为有唯一键约束了,所以重复数据只会插入报错,不会导致数据库中出现脏数据。

2.6 MQ处理消息失败了怎么办?

参考答案

一般生产环境中,都会在使用MQ的时候设计两个队列:一个是核心业务队列,一个是死信队列。核心业务队列,就是比如专门用来让订单系统发送订单消息的,然后另外一个死信队列就是用来处理异常情况的。

比如说要是第三方物流系统故障了,此时无法请求,那么仓储系统每次消费到一条订单消息,尝试通知发货和配送,都会遇到对方的接口报错。此时仓储系统就可以把这条消息拒绝访问,或者标志位处理失败!注意,这个步骤很重要。

一旦标志这条消息处理失败了之后,MQ就会把这条消息转入提前设置好的一个死信队列中。然后你会看到的就是,在第三方物流系统故障期间,所有订单消息全部处理失败,全部会转入死信队列。然后你的仓储系统得专门有一个后台线程,监控第三方物流系统是否正常,能否请求的,不停的监视。一旦发现对方恢复正常,这个后台线程就从死信队列消费出来处理失败的订单,重新执行发货和配送的通知逻辑。死信队列的使用,其实就是MQ在生产实践中非常重要的一环,也就是架构设计必须要考虑的。

2.7 请介绍消息队列推和拉的使用场景

参考答案

推模式:

推模式是服务器端根据用户需要,由目的、按时将用户感兴趣的信息主动发送到用户的客户端。

优点:

  • 对用户要求低,方便用户获取需要的信息;
  • 及时性好,服务器端及时地向客户端推送更新动态信息,吞吐量大。

缺点:

  • 不能确保发送成功,推模式采用广播方式,只有服务器端和客户端在同一个频道上,推模式才有效,用户才能接收到信息;
  • 没有信息状态跟踪,推模式采用开环控制技术,一个信息推送后的状态,比如客户端是否接收等,无从得知;
  • 针对性较差。推送的信息可能并不能满足客户端的个性化需求。

拉模式:

拉模式是客户端主动从服务器端获取信息。

优点:

  • 针对性强,能满足客户端的个性化需求;
  • 信息传输量较小,网络中传输的只是客户端的请求和服务器端对该请求的响应;
  • 服务器端的任务轻。服务器端只是被动接收查询,对客户端的查询请求做出响应。

缺点:

  • 实时性较差,针对于服务器端实时更新的信息,客户端难以获取实时信息;
  • 对于客户端用户的要求较高,需要对服务器端具有一定的了解。

2.8 RabbitMQ和Kafka有什么区别?

参考答案

在实际生产应用中,通常会使用Kafka作为消息传输的数据管道,RabbitMQ作为交易数据作为数据传输管道,主要的取舍因素则是是否存在丢数据的可能。RabbitMQ在金融场景中经常使用,具有较高的严谨性,数据丢失的可能性更小,同时具备更高的实时性。而Kafka优势主要体现在吞吐量上,虽然可以通过策略实现数据不丢失,但从严谨性角度来讲,大不如RabbitMQ。而且由于Kafka保证每条消息最少送达一次,有较小的概率会出现数据重复发送的情况。详细来说,它们之间主要有如下的区别:

  1. 应用场景方面RabbitMQ:用于实时的,对可靠性要求较高的消息传递上。Kafka:用于处于活跃的流式数据,大数据量的数据处理上。
  2. 架构模型方面RabbitMQ:以broker为中心,有消息的确认机制。Kafka:以consumer为中心,没有消息的确认机制。
  3. 吞吐量方面RabbitMQ:支持消息的可靠的传递,支持事务,不支持批量操作,基于存储的可靠性的要求存储可以采用内存或硬盘,吞吐量小。Kafka:内部采用消息的批量处理,数据的存储和获取是本地磁盘顺序批量操作,消息处理的效率高,吞吐量高。
  4. 集群负载均衡方面RabbitMQ:本身不支持负载均衡,需要loadbalancer的支持。Kafka:采用zookeeper对集群中的broker,consumer进行管理,可以注册topic到zookeeper上,通过zookeeper的协调机制,producer保存对应的topic的broker信息,可以随机或者轮询发送到broker上,producer可以基于语义指定分片,消息发送到broker的某个分片上。

2.9 Kafka为什么速度快?

参考答案

Kafka的消息是保存或缓存在磁盘上的,一般认为在磁盘上读写数据是会降低性能的,因为寻址会比较消耗时间,但是实际上,Kafka的特性之一就是高吞吐率。即使是普通的服务器,Kafka也可以轻松支持每秒百万级的写入请求,超过了大部分的消息中间件,这种特性也使得Kafka在日志处理等海量数据场景广泛应用。

下面从数据写入和读取两方面分析,为什么Kafka速度这么快:

写入数据:

Kafka会把收到的消息都写入到硬盘中,它绝对不会丢失数据。为了优化写入速度Kafka采用了两个技术,顺序写入和MMFile 。

一、顺序写入

磁盘读写的快慢取决于你怎么使用它,也就是顺序读写或者随机读写。在顺序读写的情况下,磁盘的顺序读写速度和内存持平。因为硬盘是机械结构,每次读写都会寻址->写入,其中寻址是一个“机械动作”,它是最耗时的。所以硬盘最讨厌随机I/O,最喜欢顺序I/O。为了提高读写硬盘的速度,Kafka就是使用顺序I/O。

而且Linux对于磁盘的读写优化也比较多,包括read-ahead和write-behind,磁盘缓存等。如果在内存做这些操作的时候,一个是JAVA对象的内存开销很大,另一个是随着堆内存数据的增多,JAVA的GC时间会变得很长,使用磁盘操作有以下几个好处:

  1. 磁盘顺序读写速度超过内存随机读写;
  2. JVM的GC效率低,内存占用大。使用磁盘可以避免这一问题;
  3. 系统冷启动后,磁盘缓存依然可用。

下图就展示了Kafka是如何写入数据的, 每一个Partition其实都是一个文件 ,收到消息后Kafka会把数据插入到文件末尾(虚框部分):

这种方法有一个缺陷——没有办法删除数据 ,所以Kafka是不会删除数据的,它会把所有的数据都保留下来,每个消费者(Consumer)对每个Topic都有一个offset用来表示读取到了第几条数据 。

二、Memory Mapped Files

即便是顺序写入硬盘,硬盘的访问速度还是不可能追上内存。所以Kafka的数据并不是实时的写入硬盘 ,它充分利用了现代操作系统分页存储来利用内存提高I/O效率。Memory Mapped Files(后面简称mmap)也被翻译成 内存映射文件,在64位操作系统中一般可以表示20G的数据文件,它的工作原理是直接利用操作系统的Page来实现文件到物理内存的直接映射。完成映射之后你对物理内存的操作会被同步到硬盘上(操作系统在适当的时候)。

通过mmap,进程像读写硬盘一样读写内存(当然是虚拟机内存),也不必关心内存的大小有虚拟内存为我们兜底。使用这种方式可以获取很大的I/O提升,省去了用户空间到内核空间复制的开销(调用文件的read会把数据先放到内核空间的内存中,然后再复制到用户空间的内存中。)

但也有一个很明显的缺陷——不可靠,写到mmap中的数据并没有被真正的写到硬盘,操作系统会在程序主动调用flush的时候才把数据真正的写到硬盘。Kafka提供了一个参数——producer.type来控制是不是主动flush,如果Kafka写入到mmap之后就立即flush然后再返回Producer叫 同步 (sync);写入mmap之后立即返回Producer不调用flush叫异步 (async)。

读取数据:

一、基于sendfile实现Zero Copy

传统模式下,当需要对一个文件进行传输的时候,其具体流程细节如下:

  • 调用read函数,文件数据被copy到内核缓冲区;
  • read函数返回,文件数据从内核缓冲区copy到用户缓冲区;
  • write函数调用,将文件数据从用户缓冲区copy到内核与socket相关的缓冲区;
  • 数据从socket缓冲区copy到相关协议引擎。

以上细节是传统read/write方式进行网络文件传输的方式,我们可以看到,在这个过程当中,文件数据实际上是经过了四次copy操作:硬盘->内核buf->用户buf->socket相关缓冲区->协议引擎。而sendfile系统调用则提供了一种减少以上多次copy,提升文件传输性能的方法。

在内核版本2.1中,引入了sendfile系统调用,以简化网络上和两个本地文件之间的数据传输。sendfile的引入不仅减少了数据复制,还减少了上下文切换。运行流程如下:

  • sendfile系统调用,文件数据被copy至内核缓冲区;
  • 再从内核缓冲区copy至内核中socket相关的缓冲区;
  • 最后再socket相关的缓冲区copy到协议引擎。

相较传统read/write方式,2.1版本内核引进的sendfile已经减少了内核缓冲区到user缓冲区,再由user缓冲区到socket相关缓冲区的文件copy,而在内核版本2.4之后,文件描述符结果被改变,sendfile实现了更简单的方式,再次减少了一次copy操作。

在Apache、Nginx、lighttpd等web服务器当中,都有一项sendfile相关的配置,使用sendfile可以大幅提升文件传输性能。Kafka把所有的消息都存放在一个一个的文件中,当消费者需要数据的时候Kafka直接把文件发送给消费者,配合mmap作为文件读写方式,直接把它传给sendfile。

二、批量压缩

在很多情况下,系统的瓶颈不是CPU或磁盘,而是网络IO,对于需要在广域网上的数据中心之间发送消息的数据流水线尤其如此。进行数据压缩会消耗少量的CPU资源,不过对于kafka而言,网络IO更应该需要考虑。

  • 如果每个消息都压缩,但是压缩率相对很低,所以Kafka使用了批量压缩,即将多个消息一起压缩而不是单个消息压缩;
  • Kafka允许使用递归的消息集合,批量的消息可以通过压缩的形式传输并且在日志中也可以保持压缩格式,直到被消费者解压缩;
  • Kafka支持多种压缩协议,包括Gzip和Snappy压缩协议。

总结:

Kafka速度的秘诀在于,它把所有的消息都变成一个批量的文件,并且进行合理的批量压缩,减少网络IO损耗,通过mmap提高I/O速度,写入数据的时候由于单个Partion是末尾添加所以速度最优。读取数据的时候配合sendfile直接暴力输出。

2.10 RabbitMQ如何保证消息已达?

参考答案

RabbitMQ可能丢失消息分为如下几种情况:

  1. 生产者丢消息:生产者将数据发送到RabbitMQ的时候,可能在传输过程中因为网络等问题而将数据弄丢了。
  2. RabbitMQ自己丢消息:如果没有开启RabbitMQ的持久化,那么RabbitMQ一旦重启数据就丢了。所以必须开启持久化将消息持久化到磁盘,这样就算RabbitMQ挂了,恢复之后会自动读取之前存储的数据,一般数据不会丢失。除非极其罕见的情况,RabbitMQ还没来得及持久化自己就挂了,这样可能导致一部分数据丢失。
  3. 消费端丢消息:主要是因为消费者消费时,刚消费到还没有处理,结果消费者就挂了,这样你重启之后,RabbitMQ就认为你已经消费过了,然后就丢了数据。

针对上述三种情况,RabbitMQ可以采用如下方式避免消息丢失:

  1. 生产者丢消息:事务机制是同步的,你提交了一个事物之后会阻塞住,但是confirm机制是异步的,发送消息之后可以接着发送下一个消息,然后RabbitMQ会回调告知成功与否。 一般在生产者这块避免丢失,都是用confirm机制。
    • 可以选择使用RabbitMQ提供是事务功能,就是生产者在发送数据之前开启事务,然后发送消息,如果消息没有成功被RabbitMQ接收到,那么生产者会受到异常报错,这时就可以回滚事务,然后尝试重新发送。如果收到了消息,那么就可以提交事务。这种方式有明显的缺点,即RabbitMQ事务开启后,就会变为同步阻塞操作,生产者会阻塞等待是否发送成功,太耗性能会造成吞吐量的下降。
    • 可以开启confirm模式。在生产者那里设置开启了confirm模式之后,每次写的消息都会分配一个唯一的id,然后如何写入了RabbitMQ之中,RabbitMQ会给你回传一个ack消息,告诉你这个消息发送OK了。如果RabbitMQ没能处理这个消息,会回调你一个nack接口,告诉你这个消息失败了,你可以进行重试。而且你可以结合这个机制知道自己在内存里维护每个消息的id,如果超过一定时间还没接收到这个消息的回调,那么你可以进行重发。
  1. RabbitMQ自己丢消息:设置消息持久化到磁盘,设置持久化有两个步骤:而且持久化可以跟生产的confirm机制配合起来,只有消息持久化到了磁盘之后,才会通知生产者ack,这样就算是在持久化之前RabbitMQ挂了,数据丢了,生产者收不到ack回调也会进行消息重发。
    • 创建queue的时候将其设置为持久化的,这样就可以保证RabbitMQ持久化queue的元数据,但是不会持久化queue里面的数据。
    • 发送消息的时候讲消息的deliveryMode设置为2,这样消息就会被设为持久化方式,此时RabbitMQ就会将消息持久化到磁盘上。 必须要同时开启这两个才可以。
  1. 消费端丢消息:使用RabbitMQ提供的ack机制,首先关闭RabbitMQ的自动ack,然后每次在确保处理完这个消息之后,在代码里手动调用ack。这样就可以避免消息还没有处理完就ack。

3. 搜索引擎

3.1 说说ElasticSearch put的全过程

参考答案

put过程主要分为三个阶段:

  1. 协调阶段:Client 客户端选择一个 node 发送 put 请求,此时当前节点就是协调节点(coordinating node)。协调节点根据 document 的 id 进行路由,将请求转发给对应的 node。这个 node 上的是 primary shard 。
  2. 主要阶段:对应的 primary shard 处理请求,写入数据 ,然后将数据同步到 replica shard。当数据写入 primary shard 和 replica shard 成功后,路由节点返回响应给 Client。
    • primary shard 会验证传入的数据结构;
    • 本地执行相关操作;
    • 将操作转发给 replica shard。
  1. 副本阶段:每个 replica shard 在转发后,会进行本地操作。

在写操作时,默认情况下,只需要 primary shard 处于活跃状态即可进行操作。在索引设置时可以设置这个属性:index.write.wait_for_active_shards。默认是 1,即 primary shard 写入成功即可返回。 如果设置为 all 则相当于 number_of_replicas+1 就是 primary shard 数量 + replica shard 数量。就是需要等待 primary shard 和 replica shard 都写入成功才算成功。可以通过索引设置动态覆盖此默认设置。

3.2 说说ElasticSearch的倒排索引

参考答案

Elasticsearch 使用一种称为倒排索引的结构,它适用于快速的全文搜索。一个倒排索引由文档中所有不重复词的列表构成,对于其中每个词,有一个包含它的文档列表。

例如,假设我们有两个文档,每个文档的 content 域包含如下内容:

  1. The quick brown fox jumped over the lazy dog
  2. Quick brown foxes leap over lazy dogs in summer

为了创建倒排索引,我们首先将每个文档的 content 域拆分成单独的 词(我们称它为 词条 或 tokens ),创建一个包含所有不重复词条的排序列表,然后列出每个词条出现在哪个文档。结果如下所示:

现在,如果我们想搜索 quick brown ,我们只需要查找包含每个词条的文档:

两个文档都匹配,但是第一个文档比第二个匹配度更高。如果我们使用仅计算匹配词条数量的简单相似性算法 ,那么,我们可以说,对于我们查询的相关性来讲,第一个文档比第二个文档更佳。

但是,我们目前的倒排索引有一些问题:

  • Quick 和 quick 以独立的词条出现,然而用户可能认为它们是相同的词。
  • fox 和 foxes 非常相似, 就像 dog 和 dogs ;他们有相同的词根。
  • jumped 和 leap, 尽管没有相同的词根,但他们的意思很相近。他们是同义词。

使用前面的索引搜索 +Quick +fox 不会得到任何匹配文档。(记住,+ 前缀表明这个词必须存在。)只有同时出现 Quick 和 fox 的文档才满足这个查询条件,但是第一个文档包含 quick fox ,第二个文档包含 Quick foxes 。

我们的用户可以合理的期望两个文档与查询匹配。我们可以做的更好。如果我们将词条规范为标准模式,那么我们可以找到与用户搜索的词条不完全一致,但具有足够相关性的文档。例如:

  • Quick 可以小写化为 quick 。
  • foxes 可以 词干提取 --变为词根的格式-- 为 fox 。类似的, dogs 可以为提取为 dog 。
  • jumped 和 leap 是同义词,可以索引为相同的单词 jump 。

现在索引看上去像这样:

这还远远不够。我们搜索 +Quick +fox 仍然 会失败,因为在我们的索引中,已经没有 Quick 了。但是,如果我们对搜索的字符串使用与 content 域相同的标准化规则,会变成查询 +quick +fox ,这样两个文档都会匹配!

3.3 说一说你对solr的了解

参考答案

Solr是一个高性能,采用Java开发,基于Lucene的全文搜索服务器。同时对其进行了扩展,提供了比Lucene更为丰富的查询语言,同时实现了可配置、可扩展并对查询性能进行了优化,并且提供了一个完善的功能管理界面,是一款非常优秀的全文搜索引擎。

相关文章:

面试题(二十二)消息队列与搜索引擎

2. 消息队列 2.1 MQ有什么用? 参考答案 消息队列有很多使用场景,比较常见的有3个:解耦、异步、削峰。 解耦:传统的软件开发模式,各个模块之间相互调用,数据共享,每个模块都要时刻关注其他模…...

Spring Security in Action 第三章 SpringSecurity管理用户

本专栏将从基础开始,循序渐进,以实战为线索,逐步深入SpringSecurity相关知识相关知识,打造完整的SpringSecurity学习步骤,提升工程化编码能力和思维能力,写出高质量代码。希望大家都能够从中有所收获&#…...

Java面试——maven篇

✅作者简介:2022年博客新星 第八。热爱国学的Java后端开发者,修心和技术同步精进。 🍎个人主页:Java Fans的博客 🍊个人信条:不迁怒,不贰过。小知识,大智慧。 💞当前专栏…...

基于微信小程序的游戏账号交易小程序

文末联系获取源码 开发语言:Java 框架:ssm JDK版本:JDK1.8 服务器:tomcat7 数据库:mysql 5.7/8.0 数据库工具:Navicat11 开发软件:eclipse/myeclipse/idea Maven包:Maven3.3.9 浏览器…...

Matlab绘制隐函数总结-二维和三维

1.二维隐函数 二维隐函数满足f(x,y)0f(x,y)0f(x,y)0,这里无法得到yf(x)yf(x)yf(x)的形式。不能通过普通函数绘制。 我们要关注的是使用fplot函数和fimplicit函数。 第1种情况:基本隐函数 基本的隐函数形式形如: x2y22x2(x2y2)12x^{2}y^{…...

如何直观地理解傅立叶变换?频域和时域的理解

如何直观地理解傅立叶变换 傅里叶变换连续形式的傅立叶变换如何直观地理解傅立叶变换?一、傅里叶级数1.1傅里叶级数的三角形式1.2 傅里叶级数的复指数形式二、傅里叶变换2.1一维连续傅里叶变换三、频谱和功率谱3.1频谱的获得3.2频谱图的特征3.3频谱图的组成频域(frequency do…...

STC15读取内部ID示例程序

STC15读取内部ID示例程序🎉本案例基于STC15F2K60S2为验证对象。 📑STC15 ID序列介绍 STC15系列STC最新一代STC15系列单片机出厂时都具有全球唯一身份证号码(ID号)。最新STC15系列单片机的程序存储器的最后7个字节单元的值是全球唯一ID号,用…...

Xml格式化与高亮显示

具体请参考:Xml格式化与高亮显示...

【GlobalMapper精品教程】045:空间分析工具(2)——相交

GlobalMapper提供的空间分析(操作)的方法有:交集、并集、单并集、差异、对称差集、相交、重叠、接触、包含、等于、内部、分离等,本文主要讲述相交工具的使用。 文章目录 一、实验数据二、符号化设置三、相交运算四、结果展示五、心灵感悟一、实验数据 加载配套实验数据(…...

4年外包终上岸,我只能说这类公司能不去就不去..

我大学学的是计算机专业,毕业的时候,对于找工作比较迷茫,也不知道当时怎么想的,一头就扎进了一家外包公司,一干就是4年。现在终于跳槽到了互联网公司了,我想说的是,但凡有点机会,千万…...

sklearn降维算法1 - 降维思想与PCA实现

目录1、概述1.1 维度概念2、PCA与SVD2.1 降维实现2.2 重要参数n_components2.2.1 案例:高维数据的可视化2.2.2 最大似然估计自选超参数2.2.3 按信息量占比选超参数1、概述 1.1 维度概念 shape返回的结果,几维几个方括号嵌套 特征矩阵特指二维的 一般来…...

「期末复习」线性代数

第一章 行列式 行列式是一个数,是一个结果三阶行列式的计算:主对角线的乘积全排列与对换逆序数为奇就为奇排列,逆序数为偶就为偶排列对换:定理一:一个排列的任意两个元素对换,排列改变奇偶性(和…...

伏并网低电压穿越技术

国内光伏并网低电压穿越要求 略: 低电压穿越方法 当前,光伏电站实现低电压穿越可通过两种方式,即增加硬件设备或者改变控制策略。本节对基于储能设备、基于无功补偿设备、基于无功电流电压支撑控制策略三种实现LVRT的典型方法进行介绍。 …...

opencv的环境搭建

大家好,我是csdn的博主:lqj_本人 这是我的个人博客主页: lqj_本人的博客_CSDN博客-微信小程序,前端,python领域博主lqj_本人擅长微信小程序,前端,python,等方面的知识https://blog.csdn.net/lbcyllqj?spm1011.2415.3001.5343哔哩哔哩欢迎关注…...

C++智能指针

c11的三个智能指针 unique_ptr独占指针,用的最多 shared_ptr记数指针,其次 weak_ptr,shared_ptr的补充,很少用 引用他们要加上头文件#include unique_ptr独占指针: 1.只能有一个智能指针管理内存 2.当指针超出作用域…...

MongoDB--》MongoDB数据库以及可视化工具的安装与使用—保姆级教程

目录 数据库简介 MongoDB数据库的安装 MongoDB数据库的启动 MongoDB数据库环境变量的配置 MongoDB图形化管理工具 数据库简介 在使用MongoDB数据库之前,我们应该要知道我们使用它的原因: 在数据库当中,有常见的三高需求: Hi…...

JAVA 基础题

1. 面向对象有哪些特征?答:继承、封装、多态2. JDK与JRE的区别是什么?答:JDK是java开发时所需环境,它包含了Java开发时需要用到的API,JRE是Java的运行时环境,JDK包含了JRE,他们是包含…...

Flutter desktop端多屏幕展示问题处理

目前越来越多的人用Flutter来做桌面程序的开发,很多应用场景在Flutter开发端还不是很成熟,有些场景目前还没有很好的插件来支持,所以落地Flutter桌面版还是要慎重。 下面来说一下近期我遇到的一个问题,之前遇到一个需要双屏展示的…...

每天10个前端小知识 【Day 9】

👩 个人主页:不爱吃糖的程序媛 🙋‍♂️ 作者简介:前端领域新星创作者、CSDN内容合伙人,专注于前端各领域技术,成长的路上共同学习共同进步,一起加油呀! ✨系列专栏:前端…...

Elasticsearch的读写搜索过程

问题 Elasticsearch在读写数据的过程是什么样的?你该如何理解这个问题! Elasticsearch的写数据过程 客户端选择一个节点发送请求,这个时候我们所说的这个节点就是协调节点(coordinating node)协调节点对document进行了路由&am…...

线上服务质量的问题该如何去处理?你有什么思路?

线上服务质量的问题该如何去处理?你有什么思路? 目录:导读 发现线上故障 处理线上故障 修复线上故障 运营线上质量 就是前几天有个同学问了我一个问题:目前业内高可用部署主要采用方案? 看到这个问题&#xff0c…...

IOC 配置,依赖注入的三种方式

xml 配置 顾名思义,就是将bean的信息配置.xml文件里,通过Spring加载文件为我们创建bean。这种方式出现很多早前的SSM项目中,将第三方类库或者一些配置工具类都以这种方式进行配置,主要原因是由于第三方类不支持Spring注解。 优点…...

自动机,即有限状态机

文章目录一、问题来源二、题目描述三、题解中的自动机四、自动机学习五、有限状态机的使用场景一、问题来源 今天做力克题目的时候看到了字符串转换整数的一道算法题,其中又看到了题解中有自动机的概念,所以在这里对自动机做个笔记。题目链接 二、题目描…...

第一部分:简单句——第一章:简单句的核心——二、简单句的核心变化(主语/宾语/表语的变化)

二、简单句的核心变化 简单句的核心变化其实就是 一主一谓(n. v.) 表达一件事情,谓语动词是其中最重要的部分,谓语动词的变化主要有四种:三态加一否(时态、语态、情态、否定),其中…...

VSCode Markdown写作引入符合规范的参考文献

Markdown可以用来写论文,写论文的时候无一例外要用到参考文献,今天来谈谈怎么自动生成参考文献。之前讲了怎么导出的pdf,文章在这里 VSCode vscode-pandoc插件将中文Markdown转换为好看的pdf文档(使用eisvogel模板) …...

电子学会2022年12月青少年软件编程(图形化)等级考试试卷(四级)答案解析

目录 一、单选题(共15题,共30分) 二、判断题(共10题,共20分) 三、编程题(共3题,共50分) 青少年软件编程(图形化)等级考试试卷(四级) 一、单选题(共15题,共30分) 1. 运行下列程序…...

JUC并发编程学习笔记(一)——知识补充(Threadlocal和引用类型)

强引用、弱引用、软引用、虚引用 Java执行 GC(垃圾回收)判断对象是否存活有两种方式,分别是引用计数法和引用链法(可达性分析法)。 **引用计数:**Java堆中给每个对象都有一个引用计数器,每当某个对象在其它地方被引用时,该对象的…...

2022级上岸浙理工MBA的复试经验提炼和备考建议

在等待联考成绩出来的那段时间,虽然内心很忐忑,但还是为复试在积极的做准备,虽然也进行了估分大概有201分,但成绩和分数线没下来之前,只能尽量多做些一些准备把。因为笔试报了达立易考的辅导班,对于浙江理工…...

人大金仓数据库索引的应用与日常运维

索引的应用 一、常见索引及适应场景 BTREE索引 是KES默认索引,采用B树实现。 适用场景 范围查询和优化排序操作。 不支持特别长的字段。 HASH索引 先对索引列计算一个散列值(类似md5、sha1、crc32),然后对这个散列值以顺序…...

20230211英语学习

Six Lifestyle Choices to Slow Memory Decline 研究发现,生活方式真能帮助记忆“抗衰”? A combination of healthy lifestyle choices such as eating well, regularly exercising, playing cards and socialising at least twice a week may help sl…...

wordpress博客页修改/百度营销推广靠谱吗

一、废话 听说很多地方都降温了,希望大家注意身体,别冻着了! 二、正文 在Android的网络通讯中,通常会使用Socket进行设备间数的数据通讯,使用Http来对网络数据进行请求。 1、Socket(套接字) 不管…...

网站百度权重怎么提升/seo优化技术培训中心

上篇文章中我们提到了代价函数J(θ)J(\theta)J(θ),并期望使它最小化,那代价函数长什么样子呢? 接下来,我们将给大家一个直观的感受,看看参数θ\thetaθ取不同值时,J(θ)J(\theta)J(θ)的几何呈现 我们可以…...

可以做英语阅读理解的网站/比较正规的代运营

使用 Spring MVC 时,很多业务场景下 Controller 需要接收日期时间参数。一个简单的做法是使用 String 接收日期时间字符串(例如:2020-01-29),然后在代码中将其转换成 Java 8 的日期时间类型或 java.util.Date 类型。这种方法虽然简单&#xf…...

网站怎样做银联支付/如何注册域名网站

网易云音乐常用API浅析 转载于:https://www.cnblogs.com/goodboy-heyang/p/5170190.html...

公司网站公司哪家好/软文代写发布

培养学科思维 提升专业能力四年级《速度、时间和路程》教材分析教材是课程资源的核心部分,是教学活动的媒介和载体,是教师开展教学活动的主要依据,也是教师和学生实践教学活动的有效工具。教材分析是教师备课中一项重要的工作,是教师进行教学…...

杭州网站建设哪家强/24小时网站建设

在这篇简短的文章中,我们将讲解下 Java 中的守护线程,看看它们可以做什么。我们还将解释守护线程和用户线程之间的区别。 守护线程和用户线程的区别 Java 提供了两种类型的线程:** 守护线程** 和 用户线程 用户线程 是高优先级线程。JVM 会…...