当前位置: 首页 > news >正文

Meet AI4S 直播预告丨房价分析新思路:神经网络直击复杂地理环境中的空间异质性

近年来,房地产市场起起落落,房价已经成为了扰动居民幸福感的重要影响因素。大多数家庭都需要面对「买不买房、何时买房、在哪儿买房、买什么房」的艰难抉择,每一个问题的答案都在某种程度上与房价的波动息息相关。

近年来,我国各城市之间的房价差异化愈发凸显,甚至是在同一个城市的同一管辖区内,不同区域的房价也会因社区环境、学区、配套商业等因素的不同而千差万别,而这就是地理信息研究中经常提到的「空间异质性」。 捕捉房价的空间特异性对于其变化趋势的预测至关重要。

针对于此,来自浙江大学 GIS 实验室的研究人员构建了 osp-GNNWR 模型, 将空间邻近性度量 (OSP) 与地理神经网络加权回归方法进行结合,创新性地引入神经网络方法,提升了模型对房价预测的准确性。

HyperAI超神经有幸邀请到了论文的第一作者浙江大学遥感与地理信息系统博士生丁佳乐,于 7 月 17 日 19:00,以线上直播的形式, 介绍模型的设计思路与应用场景,并进一步分享地理加权回归的空间回归分析方法。

点击即可预约直播:

https://www.huodongxing.com/event/2762111401922

嘉宾介绍

分享主题:

神经网络为房价的空间异质性提供新解释

内容简介:

为刻画地理要素间回归关系在不同空间位置体现出的空间非平稳性,地理加权回归 (GWR) 等空间回归模型根据地理学第一定律,将空间上更邻近的样本赋予更高的权重来建立局部的回归关系。然而,在复杂的城市场景中,简单的直线距离并不能充分反映真实的空间邻近性。

我们通过一个简单的神经网络模型,在保留回归结果的空间可解释性的同时,优化了空间邻近性的表达,从而获得了更高的建模精度。

此外,我们还开源了一个时空智能回归模型库,其中包含 GNNWR、GTNNWR 模型和其他衍生模型的源代码、模型使用教程笔记,以及已发布的 Python wheels。

项目地址:
https://github.com/zjuwss/gnnwr

观众观看本场分享,你将了解:

  1. 可以对 GWR 传统的空间回归分析方法有一定的了解

  2. 可以了解 osp-GNNWR 模型的设计思路和作用

  3. 可以收获一个房价分析的新思路

浙江省资源与环境信息系统重点实验室

浙江省资源与环境信息系统重点实验室于 1993 年 11 月批复组建,1995 年 4 月建成开放,主要面向数字地球和地理信息系统、遥感和全球定位系统技术等国家高新科技领域。实验室拥有地理信息科学本科,遥感与地理信息系统硕士、博士点。

实验室从基础理论方法、核心关键技术、重大工程应用三个层面开展研究工作。

重大基础研究围绕地球系统大数据的基础理论与原创方法、地表环境变化过程及人地耦合展开理论研究。* 核心关键技术研究围绕时空大数据存储管理、高性能 GIS、三维 GIS 可视化、智能 GIS 深度分析挖掘等前沿方向开展攻关,提升超海量、高精度、高复杂时空数据的应用效率和价值,解决当前地理信息和遥感领域的「卡脖子」瓶颈问题。

重大工程应用研究围绕自然资源、海洋、测绘、农业、林业、交通、环保、防灾减灾等领域,面向国家重大战略及社会应用需求开展软件研发及成果转化,旨在解决实际应用需求。

Meet AI4S 系列直播

HyperAI超神经 (hyper.ai) 是中国最⼤的数据科学领域搜索引擎,聚焦 AI for Science 的最新科研成果,实时追踪 Nature、Science 等顶级刊物的学术论文,至今已完成百余篇 AI for Science 论文的解读。

此外,我们还运营了国内唯一 AI for Science 开源项目 awesome-ai4s。

项目地址:

https://github.com/hyperai/awesome-ai4s

为了进一步推进 AI4S 的普适化,将学术机构的科研成果进一步降低传播壁垒,分享给更广泛的行业学者、科技爱好者及产业单位,HyperAI超神经策划了「Meet AI4S」视频栏目,邀请深耕 AI for Science 领域的科研人员或相关单位,以视频的形式分享研究成果、方法思路, 共同探讨 AI for Science 在科研进展及推进落地过程中面临的机遇和挑战,促进 AI for Science 的科学普及和传播。

相关文章:

Meet AI4S 直播预告丨房价分析新思路:神经网络直击复杂地理环境中的空间异质性

近年来,房地产市场起起落落,房价已经成为了扰动居民幸福感的重要影响因素。大多数家庭都需要面对「买不买房、何时买房、在哪儿买房、买什么房」的艰难抉择,每一个问题的答案都在某种程度上与房价的波动息息相关。 近年来,我国各…...

支持向量机(SVM)在机器学习中的简单示例

目录 工作原理 核函数 SVM用于分类 结果分析 结论 ❤❤❤动动发财的小手点点赞点点关注哦~~~❤❤❤ 支持向量机是一种强大的监督学习模型,用于分类和回归任务。它通过找到数据点之间的最优边界来区分不同的类别。SVM特别适用于那些具有清晰边界但线性不可分的…...

使用Anaconda虚拟环境安装Opencv、pytorch、torchvision踩坑记录

电脑 python 环境版本过高与下载Opencv(3.4以下)不匹配,因为版本过高部分算法收米, 从而在虚拟环境重新下载python老版本 本文默认您的电脑上已经安装了Anaconda 我是按照这位博文安装的 安装Opencv (详解)安装3.4.1.15版本…...

【人工智能】CPU、GPU与TPU:人工智能领域的核心处理器概述

在人工智能和计算技术的快速发展中,CPU(中央处理器)、GPU(图形处理器)和TPU(张量处理器)作为核心处理器,各自扮演着不可或缺的角色。它们不仅在性能上各有千秋,还在不同的…...

【康复学习--LeetCode每日一题】3099. 哈沙德数

题目: 如果一个整数能够被其各个数位上的数字之和整除,则称之为 哈沙德数(Harshad number)。给你一个整数 x 。如果 x 是 哈沙德数 ,则返回 x 各个数位上的数字之和,否则,返回 -1 。 示例 1&a…...

docker使用jdk21启动jar包报错

[0.007s][warning][os,thread] Failed to start thread "GC Thread#0" - pthread_create failed (EPERM) for attributes: stacksize: 1024k, guardsize: 4k, detached. [0.007s][error ][gc,task ] Failed to create worker thread解决办法 1 (使用doc…...

Object 类中的公共方法详解

Object 类中的公共方法详解 1、clone() 方法2、equals(Object obj) 方法3、hashCode() 方法4、getClass() 方法5、wait() 方法6、notify() 和 notifyAll() 方法 💖The Begin💖点点关注,收藏不迷路💖 在 Java 中,Object…...

python 字典 一个key 多 value 遍历

在Python中,如果一个键对应多个值,你需要确保这些值被存储在一个容器类型(如列表或集合)中。你可以使用默认字典(collections.defaultdict)来简化这个过程。以下是一个示例代码: from collecti…...

vue---基本原理(二)

1、slot的基础理解 slot又名插槽,是vue的内容分发机制,组件内部的模板引擎使用slot元素作为承载分发的出口。是子组件的一个模板标签元素,而这一个标签元素是否显示,以及怎么显示,是由父元素控制的。slot又分为默认插槽…...

桂花网蓝牙网关X1000:引领物联网新时代的智能连接

在物联网技术飞速发展的今天,蓝牙网关作为连接蓝牙设备与互联网的关键设备,其性能与稳定性直接影响到物联网系统的整体运行效果。桂花网蓝牙网关X1000凭借其卓越的性能和广泛的应用场景,成为了物联网领域的佼佼者。 一、产品概述 桂花网蓝牙…...

JAVA案例模拟电影信息系统

一案例要求: 二具体代码(需要在同一个包下创建三个类) Ⅰ:实现类 package 重修;import java.util.Random; import java.util.Scanner;public class first {public static void main(String[] args) {javabean[]moviesnew javabean[4];movies[0] new ja…...

基于Hadoop平台的电信客服数据的处理与分析③项目开发:搭建基于Hadoop的全分布式集群---任务10:Hive安装部署

任务描述 任务内容为安装并配置在Hadoop集群中使用Hive。 任务指导 Hive是一个基于Hadoop的数据仓库框架,在实际使用时需要将元数据存储在数据库中 具体安装步骤如下: 1. 安装MySQL数据库(已安装) 2. 解压缩Hive的压缩包 3…...

第一百四十二节 Java数据类型教程 - Java字符数据类型

Java数据类型教程 - Java字符数据类型 Character类的一个对象包装一个char值。 字符类包含isLetter()和isDigit()方法来检查字符是否为字母和数字。 toUpperCase()和toLowerCase()方法将字符转换为大写和小写。 该类提供了一个构造函数和一个工厂valueOf()方法来从char创建对…...

AI 绘画的常用技巧和操作方法

随着人工智能技术的飞速发展,AI 绘画已经成为设计和艺术领域的一股新兴力量。无论是设计师、艺术家,还是普通的科技爱好者,都能通过 AI 绘画工具创造出令人惊叹的作品。 AI 绘画的基本原理 AI 绘画的核心在于机器学习算法。通过训练大量的图像…...

Kafka入门到精通(四)-SpringBoot+Kafka

一丶IDEA创建一个空项目 二丶添加相关依赖 <dependencies><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId></dependency><dependency><groupId>org.springf…...

起飞,纯本地实时语音转文字!

简介 偶然在 github 上翻到了这个项目 https://github.com/k2-fsa/sherpa-ncnn 在没有互联网连接的情况下使用带有 ncnn 的下一代 Kaldi 进行实时语音识别。支持 iOS、Android、Raspberry Pi、VisionFive2、LicheePi4A等。 也就是说语音转文字可以不再借助网络服务的接口&am…...

SQL面试题练习 —— 找出所有连续未登录5天及以上的用户并提取出这些用户最近一次登录的日期

目录 1 题目2 建表语句3 题解 1 题目 找出所有连续未登录5天及以上的用户并提取出这些用户最近一次登录的日期 样例数据 ----------------------------------------------- | user_login.user_id | user_login.login_date | ---------------------------------------------…...

微深节能 煤码头自动化翻堆及取料集控系统 格雷母线

微深节能格雷母线高精度位移测量系统是一种先进的工业自动化位置检测解决方案&#xff0c;它被广泛应用于煤码头自动化翻堆及取料集控系统中&#xff0c;以实现对斗轮堆取料机等大型机械设备的精准定位和自动化控制。 系统原理简述&#xff1a; 格雷母线系统的工作原理基于电磁…...

CSS 背景添加白色小圆点样式

css也是开发过程中不可忽视的技巧 此专栏用来纪录不常见优化页面样式的css代码 效果图: 未添加之前: 代码: background: radial-gradient(circle at 1px 1px, #3d3c3c 2px, transparent 0);background-size: 20px 25px;...

【HTML入门】第一课 - 网页标签框架

这一节&#xff0c;我们说一下学习前端开发的话&#xff0c;最入门的也是非常重要的一门可成&#xff0c;也就是HTML。HTML标签&#xff0c;是网页的重要组成部分&#xff0c;可以说&#xff0c;你看到网页上的内容&#xff0c;都是基于HTML标签呈现出来的。 这一小节呢&#…...

conda相比python好处

Conda 作为 Python 的环境和包管理工具&#xff0c;相比原生 Python 生态&#xff08;如 pip 虚拟环境&#xff09;有许多独特优势&#xff0c;尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处&#xff1a; 一、一站式环境管理&#xff1a…...

工业安全零事故的智能守护者:一体化AI智能安防平台

前言&#xff1a; 通过AI视觉技术&#xff0c;为船厂提供全面的安全监控解决方案&#xff0c;涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面&#xff0c;能够实现对应负责人反馈机制&#xff0c;并最终实现数据的统计报表。提升船厂…...

day52 ResNet18 CBAM

在深度学习的旅程中&#xff0c;我们不断探索如何提升模型的性能。今天&#xff0c;我将分享我在 ResNet18 模型中插入 CBAM&#xff08;Convolutional Block Attention Module&#xff09;模块&#xff0c;并采用分阶段微调策略的实践过程。通过这个过程&#xff0c;我不仅提升…...

家政维修平台实战20:权限设计

目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系&#xff0c;主要是分成几个表&#xff0c;用户表我们是记录用户的基础信息&#xff0c;包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题&#xff0c;不同的角色&#xf…...

基础测试工具使用经验

背景 vtune&#xff0c;perf, nsight system等基础测试工具&#xff0c;都是用过的&#xff0c;但是没有记录&#xff0c;都逐渐忘了。所以写这篇博客总结记录一下&#xff0c;只要以后发现新的用法&#xff0c;就记得来编辑补充一下 perf 比较基础的用法&#xff1a; 先改这…...

相机从app启动流程

一、流程框架图 二、具体流程分析 1、得到cameralist和对应的静态信息 目录如下: 重点代码分析: 启动相机前,先要通过getCameraIdList获取camera的个数以及id,然后可以通过getCameraCharacteristics获取对应id camera的capabilities(静态信息)进行一些openCamera前的…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)

在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...

AI病理诊断七剑下天山,医疗未来触手可及

一、病理诊断困局&#xff1a;刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断"&#xff0c;医生需通过显微镜观察组织切片&#xff0c;在细胞迷宫中捕捉癌变信号。某省病理质控报告显示&#xff0c;基层医院误诊率达12%-15%&#xff0c;专家会诊…...

纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join

纯 Java 项目&#xff08;非 SpringBoot&#xff09;集成 Mybatis-Plus 和 Mybatis-Plus-Join 1、依赖1.1、依赖版本1.2、pom.xml 2、代码2.1、SqlSession 构造器2.2、MybatisPlus代码生成器2.3、获取 config.yml 配置2.3.1、config.yml2.3.2、项目配置类 2.4、ftl 模板2.4.1、…...

ubuntu22.04有线网络无法连接,图标也没了

今天突然无法有线网络无法连接任何设备&#xff0c;并且图标都没了 错误案例 往上一顿搜索&#xff0c;试了很多博客都不行&#xff0c;比如 Ubuntu22.04右上角网络图标消失 最后解决的办法 下载网卡驱动&#xff0c;重新安装 操作步骤 查看自己网卡的型号 lspci | gre…...