当前位置: 首页 > news >正文

【网络】https协议

🥁作者华丞臧.
📕​​​​专栏:【网络】
各位读者老爷如果觉得博主写的不错,请诸位多多支持(点赞+收藏+关注)。如果有错误的地方,欢迎在评论区指出。
推荐一款刷题网站 👉 LeetCode刷题网站


文章目录

  • 前言
  • 一、https
    • 1.1 什么是https
      • 加密和解密
      • 为什么需要加密?
  • 二、常见的加密方式
    • 2.1 对称加密
    • 2.2 非对称加密
  • 三、数据摘要(数据指纹)
  • 四、数字签名
  • 五、实现https的方案探究
    • 5.1 方案一:只使用对称加密
    • 5.2 方案二:只使用非对称加密
    • 5.3 方案三:双方都是用非对称加密
    • 5.4 方案四:非对称加密 + 对称加密
    • 5.5 中间人攻击 - 针对方案四的场景
      • 引入证书 -- CA证书
      • 理解数据签名
    • 5.6 方案五:非对称加密 + 对称加密 + 证书认证
      • 客户端进行认证
      • 中间人可能篡改证书吗?
      • 中间人可能掉包整个证书吗?
      • 为什么摘要内容在⽹络传输的时候⼀定要加密形成签名?
      • 为什么签名不直接加密,而是先要hash形成摘要?
      • 查看浏览器受信任证书
  • 六、总结


前言

http是超文本传输协议,以明文方式传输,在数据传输的过程存在很大的安全隐患,数据容易被第三方攻击截获并且篡改,因此目前主流都会在http与tcp之间(还在应用层)使用SSL/TLS进行加密。

一、https

1.1 什么是https

我们将包含http以及加密层(SSL/TLS)称为https。

加密和解密

  • 加密就是把明文(要传输的信息)进行一系列变换,生成密文。
  • 解密就是把密文进行一系列变换还原成明文。
  • 在加密和解密的过程中,往往需要一个或者多个中间数据,辅助进行这个过程,这样的数据称为密钥

加密解密到如今已经发展成⼀个独⽴的学科:密码学。⽽密码学的奠基⼈,也正是计算机科学的祖师爷之⼀,艾伦·⻨席森·图灵。

为什么需要加密?

  • 所有的加密都是为了防止有中间人进行窃取和篡改。
  • 因为http的内容是明⽂传输的,明⽂数据会经过路由器、wifi热点、通信服务运营商、代理服务器等多个物理节点,如果信息在传输过程中被劫持,传输的内容就完全暴露了。劫持者还可以篡改传输的信息且不被双⽅察觉,这就是 中间⼈攻击 ,所以我们才需要对信息进⾏加密。

运营商劫持:相信很多人都碰到过,尤其是在手机非常普及的现在,通常很多时候我们使用浏览器去下载某一个软件,比如手机上的app,点击下载按钮就会弹出应用宝的下载链接(之前经常遇到过特别恶心人),使用QQ点击某个链接就会弹出下载QQ浏览器的链接。
由于我们通过⽹络传输的任何的数据包都会经过运营商的⽹络设备(路由器, 交换机等), 那么运营商的⽹络设备就可以解析出你传输的数据内容, 并进⾏篡改.
点击 “下载按钮”, 其实就是在给服务器发送了⼀个 HTTP 请求, 获取到的 HTTP 响应其实就包含了该APP 的下载链接. 运营商劫持之后, 就发现这个请求是要下载天天动听, 那么就⾃动的把交给⽤⼾的响应给篡改成 “QQ浏览器” 的下载地址了.

在这里插入图片描述
在互联⽹上, 明⽂传输是⽐较危险的事情!!!
HTTPS 就是在 HTTP 的基础上进⾏了加密, 进⼀步的来保证⽤⼾的信息安全。

二、常见的加密方式

2.1 对称加密

  • 采⽤单钥密码系统的加密⽅法,同⼀个密钥可以同时⽤作信息的加密和解密,这种加密⽅法称为对称加密,也称为单密钥加密,特征:加密和解密所⽤的密钥是相同的
  • 常⻅对称加密算法(了解):DES、3DES、AES、TDEA、Blowfish、RC2等。
  • 特点:算法公开、计算量⼩、加密速度快、加密效率⾼。

对称加密就是通过同一个“密钥”,把明文加密成密文,并且也能把密文解密成明文,即使用同一个密钥进行加密和解密。

2.2 非对称加密

  • 需要两个密钥来进⾏加密和解密,这两个密钥是公开密钥(public key,简称公钥)和私有密钥(private key,简称私钥)。
  • 常⻅⾮对称加密算法(了解):RSA,DSA,ECDSA。
  • 特点:算法强度复杂、安全性依赖于算法与密钥,但是由于其算法复杂⽽使得加密解密速度没有对称加密解密的速度快。

⾮对称加密要⽤到两个密钥, ⼀个叫做 “公钥”, ⼀个叫做 “私钥”,而一般使用时一个公开另一个私密。
公钥和私钥是配对的. 最⼤的缺点就是运算速度⾮常慢⽐对称加密要慢很多

  • 通过公钥对明⽂加密, 变成密⽂
  • 通过私钥对密⽂解密, 变成明⽂

也可以反着⽤:

  • 通过私钥对明⽂加密, 变成密⽂
  • 通过公钥对密⽂解密, 变成明⽂

⾮对称加密的数学原理⽐较复杂,涉及到⼀些 数论相关的知识,这⾥举⼀个简单的⽣活上的例⼦,如下:

A 要给 B ⼀些重要的⽂件,但是 B 可能不在。
于是 A 和 B 提前做出约定:
B 说:我桌⼦上有个盒⼦,然后我给你⼀把锁,你把⽂件放盒⼦⾥⽤锁锁上,然后我回头拿着钥匙来开锁取⽂件。
在这个场景中,这把锁就相当于公钥,钥匙就是私钥。公钥给谁都⾏(不怕泄露),但是私钥只有 B ⾃⼰持有,持有私钥的⼈才能解密。第三方想要拿到文件只有两种方法:一. 从B中抢来私钥;二. 破坏盒子或者锁;这两种方法无论那种都会被A和B发现。

三、数据摘要(数据指纹)

  • 数字指纹(数据摘要),其基本原理是利⽤ 单向散列函数(Hash函数) 对信息进⾏运算,⽣成⼀串固定⻓度的数字摘要。数字指纹并不是⼀种加密机制,但可以⽤来判断数据有没有被窜改。
  • 摘要常⻅算法:有MD5、SHA1、SHA256、SHA512等,算法把⽆限的映射成有限,因此可能会有碰撞(两个不同的信息,算出的摘要相同,但是概率⾮常低)。
  • 摘要特征:和加密算法的区别是,摘要严格意义不是加密,因为没有解密,只不过从摘要很难反推原信息(基本上不可能反推),通常⽤来进⾏数据对⽐。

四、数字签名

  • 摘要经过加密,就得到数字签名。
  • 不同的算法得到的数字签名长度可能不同,如MD5就有16字节版本和32字节版本。

五、实现https的方案探究

既然要保证数据安全,就需要进⾏ 加密。⽹络传输中不能直接传输明⽂, ⽽是加密之后的 “密⽂”。加密的⽅式有很多,但是整体可以分成两⼤类:对称加密 和 ⾮对称加密。

5.1 方案一:只使用对称加密

通信双方都各自持有同一个密钥X,且没有第三方知道,这两方的通信安全当然是可以被保证的,除非密钥被破解。引入对称密钥后即使数据被截获,由于黑客不知道密钥,因此无法进行解密,也就无法获取请求的数据了。

在这里插入图片描述
但是这里还存在一个问题,服务器同时给很多用户提供服务,这么多的用户不可能使用同一密钥,因此服务器就需要维护每个客户端和每个密钥之间的关联联系。但是客户端也需要知道密钥是什么,也就是说在通信双方协商密钥时,密钥通过什么方式传输呢?http?http肯定是不行的。
在这里插入图片描述

因为是明文传输黑客也能获得密钥,所以密钥的传输也需要加密传输,但是要想对密钥进⾏对称加密,就仍然需要先协商确定⼀个 “密钥的密钥”。这就成了 “先有鸡还是先有蛋” 的问题了,所以方案一行不通

5.2 方案二:只使用非对称加密

鉴于⾮对称加密的机制,如果服务器先把公钥以明⽂⽅式传输给浏览器,之后浏览器向服务器传数据前都先⽤这个公钥加密好再传,从客⼾端到服务器信道似乎是安全的(有安全问题),因为只有服务器有相应的私钥能解开公钥加密的数据。

在这里插入图片描述

但是服务器到浏览器的这条路怎么保障安全?
如果服务器⽤它的私钥加密数据传给浏览器,那么浏览器⽤公钥可以解密它,⽽这个公钥是⼀开始通过明⽂传输给浏览器的,若这个公钥被中间⼈劫持到了,那他也能⽤该公钥解密服务器传来的信息了。

5.3 方案三:双方都是用非对称加密

服务端拥有公钥S和对应的私钥S``,客户端有公钥C和对应的私钥C`。

  • 那么此时客⼾和服务端交换公钥;
  • 客⼾端给服务端发信息:先⽤S对数据加密,再发送,只能由服务器解密,因为只有服务器有私钥S’
  • 服务端给客⼾端发信息:先⽤C对数据加密,在发送,只能由客⼾端解密,因为只有客⼾端有私钥C’

在这里插入图片描述

这样貌似也⾏啊,但是还是存咋两个问题:

  1. 效率太低,非对称加密运算速度⾮常慢,在网络通信中是不允许的。
  2. 依旧有安全问题,详情前往下看。

5.4 方案四:非对称加密 + 对称加密

  • 服务端拥有非对称密钥公钥S和对应的私钥S`。
  • 客户端发起https请求,获取服务端公钥S;
  • 客户端在本地生成对称密钥C,通过公钥S加密,发送给服务器;
  • 由于中间的⽹络设备没有私钥, 即使截获了数据,也⽆法还原出内部的原⽂,也就⽆法获取到对称密钥;
  • 服务器通过私钥S’解密,还原出客⼾端发送的对称密钥C。并且使⽤这个对称密钥加密给客⼾端返回的响应数据。
  • 后续客⼾端和服务器的通信都只⽤对称加密即可。由于该密钥只有客⼾端和服务器两个主机知道,其他主机/设备不知道密钥即使截获数据也没有意义。

在这里插入图片描述

效率问题

由于对称加密的效率⽐⾮对称加密⾼很多, 因此只是在开始阶段协商密钥的时候使⽤⾮对称加密,后续的传输仍然使⽤对称加密。

安全问题

方案四依旧存在安全问题,方案二、方案三、方案四都存在同一个问题:如果最开始,中间人就已经开始攻击了呢?

5.5 中间人攻击 - 针对方案四的场景

  • Man-in-the-MiddleAttack,简称“MITM攻击

确实,在⽅案2/3/4中,客⼾端获取到公钥S之后,对客⼾端形成的对称秘钥X⽤服务端给客⼾端的公钥S进⾏加密,中间⼈即使窃取到了数据,此时中间⼈确实⽆法解出客⼾端形成的密钥X,因为只有服务器有私钥S’

但是中间⼈的攻击,如果在最开始握⼿协商的时候就进⾏了,那就不⼀定了,假设黑客已经成功成为中间⼈:

  1. 服务器具有⾮对称加密算法的公钥S,私钥S’;
  2. 中间⼈具有⾮对称加密算法的公钥M,私钥M’;
  3. 客⼾端向服务器发起请求,服务器明⽂传送公钥S给客⼾端;
  4. 中间⼈劫持数据报⽂,提取公钥S并保存好,然后将被劫持报⽂中的公钥S替换成为⾃⼰的公钥M,并将伪造报⽂发给客⼾端;
  5. 客⼾端收到报⽂,提取公钥M(⾃⼰当然不知道公钥被更换过了),⾃⼰形成对称秘钥C,⽤公钥M加密C,形成报⽂发送给服务器;
  6. 中间⼈劫持后,直接⽤⾃⼰的私钥M’进⾏解密,得到通信秘钥C,再⽤曾经保存的服务端公钥S加密后,将报⽂推送给服务器;
  7. 服务器拿到报⽂,⽤⾃⼰的私钥S’解密,得到通信秘钥C;
  8. 双⽅开始采⽤X进⾏对称加密,进⾏通信。但是⼀切都在中间⼈的掌握中,劫持数据,进⾏窃听甚⾄修改,都是可以的。

在这里插入图片描述

上⾯的攻击⽅案,同样适⽤于⽅案2,⽅案3。问题本质出在哪⾥了呢?本质都是客⼾端⽆法确定收到的含有公钥的数据报⽂,就是⽬标服务器发送过来的

引入证书 – CA证书

服务端在使⽤HTTPS前,需要向CA机构申领⼀份数字证书,数字证书⾥含有证书申请者信息、公钥信息等。服务器把证书传输给浏览器,浏览器从证书⾥获取公钥就⾏了,证书就如⾝份证,证明服务端公钥的权威性。

在这里插入图片描述

这个 证书 可以理解成是⼀个结构化的字符串, ⾥⾯包含了以下信息:

  • 证书发布机构
  • 证书有效期
  • 公钥
  • 证书所有者
  • … …

申请证书的时候,需要在特定平台生成一对密钥,即公钥和私钥,这对密钥就是用来在网络通信中进行明文加密以及数字签名的。其中公钥会随着CSR⽂件,⼀起发给CA进⾏权威认证,私钥服务端⾃⼰保留,⽤来后续进⾏通信(其实主要就是⽤来交换对称秘钥)。
可以使⽤在线⽣成CSR和私钥:https://myssl.com/csr_create.html
形成CSR之后,后续就是向CA进⾏申请认证,不过⼀般认证过程很繁琐,⽹络各种提供证书申请的服务商,⼀般真的需要,直接找平台解决就⾏。

理解数据签名

签名的形成是基于非对称加密算法的,不要和https中的公钥和私钥搞混了。
在这里插入图片描述
当服务器申请CA证书时,CA机构会对该服务端进行审核,并专门为该网站形成对应的数字签名,其过程如下:

  1. CA机构拥有非对称加密的公钥A和私钥A`;
  2. CA机构对服务端申请证书的明文进行hash,形成数据摘要;
  3. 然后CA机构使用私钥A`对数据摘要加密,等到数字签名S;
  4. 服务端申请的整数明文和数字签名S共同组成了数字证书,这样一份数字证书就可以颁发给服务端了。

那么服务端怎么验证证书是否有效呢,过程如下:

  1. 服务端拿到数字证书;
  2. 服务端对数字证书中的数据进行hash,形成数据摘要S`;
  3. 再使用CA机构的公钥A对数字证书中的签名进行解密,得到数据摘要S;
  4. 对比S`和S是否一致,一致则数字签名有效。

5.6 方案五:非对称加密 + 对称加密 + 证书认证

在客⼾端和服务器刚⼀建⽴连接的时候, 服务器给客⼾端返回⼀个 证书,证书包含了之前服务端的公钥,也包含了⽹站的⾝份信息。

客户端进行认证

当客⼾端获取到这个证书之后,会对证书进⾏校验(防⽌证书是伪造的)。

  • 判定证书的有效期是否过期。
  • 判定证书的发布机构是否受信任(操作系统中已内置的受信任的证书发布机构)。
  • 验证证书是否被篡改: 从系统中拿到该证书发布机构的公钥,对签名解密得到⼀个 hash 值(称为数据摘要),设为 hash1;然后计算整个证书的 hash 值,设为 hash2;对⽐ hash1 和 hash2 是否相等。如果相等,则说明证书是没有被篡改过的。

在这里插入图片描述

中间人可能篡改证书吗?

  • 首先客户端是会使用CA机构的公钥对证书中的签名进行解密的,如果中间人篡改了证书的明文,由于他没有CA机构的私钥,所以无法hash之后用私钥加密形成签名,所以中间人无法对篡改后的整数形成匹配的签名。
  • 如果强行篡改,客户端收到该证书后会发现明文和签名解密后的值不一致,说明证书已被篡改,证书不可信,从而终止向服务器传输信息,防止信息泄露给中间人。

中间人可能掉包整个证书吗?

  • 中间人不可能掉包整个证书,因为中间人没有CA私钥,所以无法制作假证书。
  • 中间⼈只能向CA申请真证书,然后⽤⾃⼰申请的证书进⾏掉包;这个方法确实能做到证书的整体掉包,但是别忘记证书明⽂中包含了域名等服务端认证信息,如果整体掉包,客⼾端依旧能够识别出来。
  • 永远记住:中间⼈没有CA私钥,所以对任何证书都⽆法进⾏合法修改,包括⾃⼰的

为什么摘要内容在⽹络传输的时候⼀定要加密形成签名?

  • 常见的摘要算法有:MD5和SHA系列。

  • 以 MD5 为例, 我们不需要研究具体的计算签名的过程, 只需要了解 MD5 的特点:

    • 定长:无论多长的字符串,计算出来的MD5值都是固定长度的(16字节版本或者32字节版本)。
    • 分散:源字符串只要改变一点点,最终得到的MD5值会发生很大的变化。
    • 不可逆:通过源字符串生成MD5很容易,但是通过MD5还原成原字符串理论上不可能。
  • 因为 MD5 有这样的特性,我们可以认为如果两个字符串的 MD5 值相同,则认为这两个字符串相同。

  • 虽然中间无法通过摘要还原出原字符串,但是如果不对摘要加密,中间人可以把明文篡改, 同时也把哈希值重新计算下, 此时客⼾端同样分辨不出来,所以被传输的哈希值不能传输明⽂,需要传输密⽂。

为什么签名不直接加密,而是先要hash形成摘要?

  • 缩小签名密文的长度,加快验证数字签名的运行速度。

查看浏览器受信任证书

浏览器, 点击右上⻆的选择 “设置”, 搜索 “证书管理” , 即可看到以下界⾯. (如果没有,在隐私设置和安全性->安全⾥⾯找找)
在这里插入图片描述

在这里插入图片描述

六、总结

https ⼯作过程中涉及到的密钥有三组:

  • 非对称加密:用于验证证书是否被篡改。服务器持有私钥和公钥,客户端持有CA公钥,服务器在客户端请求时返回携带签名的证书;客户端通过CA机构公钥进行证书验证,保证证书的合法性,进⼀步保证证书中携带的服务端公钥权威性。
  • 非对称加密:用于协商生成对称加密的密钥,客户端用收到的CA整数中的公钥,给随机生成的对称加密的密钥加密,传输给服务器,服务器通过私钥解密获取得到堆成加密密钥。
  • 对称密钥:客户端和服务端后续通过这个对称密钥对传输数据进行加密和解密。

https相关概念

  • 将包含http以及加密层(SSL/TLS)称为https
  • 数据摘要:通过特定算法 (MD5、SHA系列) 形成特定的字符串,具有唯一性(出现重复的概率比中彩票还低的多)和不可逆性。
  • 证书:证书等于证书明文数据 加上 使用认证机构私钥加密[证书明文所形成的数字摘要]所生成的签名。其中证书明文数据 包含证书发布机构、证书有效期、公钥、证书所有者等。
  • 证书不可被伪造,除非认证结构泄露私钥或者私钥被破解
  • 所有的加密都是为了防止有中间人进行窃取和篡改

相关文章:

【网络】https协议

🥁作者: 华丞臧. 📕​​​​专栏:【网络】 各位读者老爷如果觉得博主写的不错,请诸位多多支持(点赞收藏关注)。如果有错误的地方,欢迎在评论区指出。 推荐一款刷题网站 👉 LeetCode刷题网站 文章…...

【11】SCI易中期刊推荐——计算机方向(中科院4区)

🚀🚀🚀NEW!!!SCI易中期刊推荐栏目来啦 ~ 📚🍀 SCI即《科学引文索引》(Science Citation Index, SCI),是1961年由美国科学信息研究所(Institute for Scientific Information, ISI)创办的文献检索工具,创始人是美国著名情报专家尤金加菲尔德(Eugene Garfield…...

STM32 OTA应用开发——通过串口/RS485实现OTA升级(方式2)

STM32 OTA应用开发——通过串口/RS485实现OTA升级(方式2) 目录STM32 OTA应用开发——通过串口/RS485实现OTA升级(方式2)前言1 环境搭建2 功能描述3 程序编写3.1 BootLoader部分3.2 APP的制作4 修改工程中的内存配置4.1 Bootloader…...

【Spring6】| Bean的生命周期(重要)

目录 一:Bean的生命周期 1. 什么是Bean的生命周期 2. Bean的生命周期之5步 3. Bean生命周期之7步 4. Bean生命周期之10步 5. Bean的scop(作用域)不同,管理方式不同 6. 自己new的对象如何让Spring管理 一:Bean的…...

【C#】单据打印方案(定义打印模板、条形码、二维码、图片、标签)

系列文章 C#项目–业务单据号生成器(定义规则、自动编号、流水号) 本文链接:https://blog.csdn.net/youcheng_ge/article/details/129129787 C#项目–开始日期结束日期范围计算(上周、本周、明年、前年等) 本文链接&…...

前后端身份验证

1、web 开发模式 【】基于服务端渲染的传统 Web 开发模式 【】基于前后端分离的新型 Web 开发模式:依赖于 Ajax 技术的广泛应用。后端只负责提供 API 接口,前端使用 Ajax 调用接口的开发模式 2、身份认证 【】服务端渲染推荐使用 Session 认证机制 【】…...

【蓝桥杯嵌入式】ADC模数转换的原理图解析与代码实现(以第十一届省赛为例)——STM32G4

🎊【蓝桥杯嵌入式】专题正在持续更新中,原理图解析✨,各模块分析✨以及历年真题讲解✨都在这儿哦,欢迎大家前往订阅本专题,获取更多详细信息哦🎏🎏🎏 🪔本系列专栏 - 蓝…...

Matlab表示 CDF 时间值

从 CDF 纪元对象中提取日期信息。CDF 表示时间的方式与 MATLAB 不同。CDF 将日期和时间表示为自 1-Jan-0000 以来的毫秒数。这在 CDF 术语中称为纪元。为了表示 CDF 日期,MATLAB 使用一个称为 CDF 纪元对象的对象。MATLAB 还可以将日期和时间表示为日期时间值或日期序列号,即…...

基于Halcon的条码定位与识别【包含 一维码 和 二维码 】

1.针对一维码问题,先列代码: dev_update_off () dev_close_window () dev_open_window (0, 0, 600, 819, black, WindowHandle) dev_set_draw (margin) *读图 read_image (Image, 20221213-174036.png)*获取一维码区域对原图进行抠图 gen_rectangle1 (ROI_0, 2169.33, 1835.…...

每天学一点之多线程

多线程 一、相关概念 并发与并行 并行(parallel):指多个事件任务在同一时刻发生(同时发生)。 并发(concurrency):指两个或多个事件在同一个微小的时间段内发生。程序并发执行可以…...

自动化测试必会的数据驱动测试你真的学会了吗?

数据驱动测试 在实际的测试过程中,我们会发现好几组用例都是相同的操作步骤,只是测试数据的不同,而我们往往需要编写多次用例来进行测试,此时我们可以利用数据驱动测试来简化该种操作。 参数化: 输入数据的不同从而…...

cpp之十大排序算法

十大排序算法 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-riZ9z3wf-1678258189998)(null)] 排序算法的稳定性:在具有多个相同关键字的记录中,若经过排序这些记录的次序保持不变,说排序算法是稳定的。 插入排序…...

java-正装照换底色小demo-技术分享

文章目录前言java-正装照换底色小demo-技术分享01 实现思路02 效果02::01 原图:02::02 执行单元测试:02::03 效果:03 编码实现前言 如果您觉得有用的话,记得给博主点个赞,评论,收藏一键三连啊,写作不易啊^ _ ^。   而且听说点赞…...

(枚举)(模拟)(二位前缀和)99. 激光炸弹

目录 题目链接 一些话 切入点 流程 套路 ac代码 题目链接 99. 激光炸弹 - AcWing题库 数~啦!我草,又~在~水~字~数~啦!我草,又~在~水~字&am…...

vue3+vite项目移动端适配:postcss-pxtorem和amfe-flexible

一,定义 postcss-pxtorem PostCSS 的一个插件,可以从像素单位生成 rem 单位。 amfe-flexible amfe-flexible是配置可伸缩布局方案,主要是将1rem设为viewWidth/10。 二,使用 1. 设置 viewport 在 index.html 中: &l…...

sin x和cos x的导数

我们都知道(sin⁡x)′cos⁡x(\sin x)\cos x(sinx)′cosx,(cos⁡x)′−sin⁡x(\cos x)-\sin x(cosx)′−sinx,但是为什么呢? sin⁡x\sin xsinx的导数 (sin⁡x)′lim⁡Δx→0sin⁡(xΔx)−sin⁡xΔx(\sin x)\lim\limits_{\Delta x\rightarrow 0…...

html下自动消失的提示框jQuery实现

引言 最近在找一个可以自动消失的提示框,找来找去,找到了这个:提示框设置_html页面提示框等待一定时间消失博主写得很好,可以直接复制运行出来,我也从中得以受益。本篇文章对这篇博客的代码做了一些小的更新&#xff…...

第27篇:Java日期处理总结(一)

目录 1、Date类 1.1 如何实例化Date对象 1.2 Date相关操作方法 1.3 如何获取当前日期...

Linux入门教程——VI/VIM 编辑器

前言 本文小新为大家带来 Linux入门教程——VI/VIM 编辑器 相关知识,具体内容包括VI/VIM是什么,VIM的三种工作模式介绍,包括:一般模式,编辑模式,指令模式,以及模式间转换等进行详尽介绍~ 不积跬…...

第十四届蓝桥杯三月真题刷题训练——第 10 天

目录 第 1 题:裁纸刀 问题描述 运行限制 代码: 第 2 题:刷题统计 问题描述 输入格式 输出格式 样例输入 样例输出 评测用例规模与约定 运行限制 代码: 第 3 题:修建灌木 问题描述 输入格式 输出格式 …...

软件测试之jira

Jira 1. Jira 概述 JIRA 是澳大利亚 Atlassian 公司开发的一款优秀的问题跟踪管理软件工具,可以对各种类型的问题进行跟踪管理,包括缺陷、任务、需求、改进等。JIRA采用J2EE技术,能够跨平台部署。它正被广泛的开源软件组织,以及…...

传统方式实现SpringMVC

一、初次尝试SpringMVC 1.1、在pom.xml中添加依赖 <dependency><groupId>org.springframework</groupId><artifactId>spring-context</artifactId><version>4.2.6.RELEASE</version></dependency><dependency><grou…...

RS232/RS485信号接口转12路模拟信号 隔离D/A转换器LED智能调光控制

特点&#xff1a;● RS-485/232接口&#xff0c;隔离转换成12路标准模拟信号输出● 可选型输出4-20mA或0-10V控制其他设备● 模拟信号输出精度优于 0.2%● 可以程控校准模块输出精度● 信号输出 / 通讯接口之间隔离耐压3000VDC ● 宽电源供电范围&#xff1a;10 ~ 30VDC● 可靠…...

聊一聊代码重构——封装集合和替换算法的代码实践

代码重构相关内容 聊一聊代码重构——我们为什么要代码重构 聊一聊代码重构——代码中究竟存在哪些坏代码 聊一聊代码重构——关于变量的代码实践 聊一聊代码重构——关于循环逻辑的代码实践 聊一聊代码重构——关于条件表达式的代码实践 聊一聊代码重构——程序方法上的…...

FPGA解码4K分辨率4line MIPI视频 OV13850采集 提供工程源码和技术支持

目录1、前言2、Xilinx官方主推的MIPI解码方案3、纯Vhdl方案解码MIPI4、vivado工程介绍5、上板调试验证6、福利&#xff1a;工程代码的获取1、前言 FPGA图像采集领域目前协议最复杂、技术难度最高的应该就是MIPI协议了&#xff0c;MIPI解码难度之高&#xff0c;令无数英雄竞折腰…...

Map接口及遍历方式

1、Map接口实现类的特点1)Map与Collection并列存在。用于保存具有映射关系的数据:Key-Value&#xff08;无序&#xff09;2) Map中的key和value可以是任何引用类型的数据&#xff0c;会封装到HashMap$Node对象中3) Map 中的key不允许重复import java.util.HashMap; import java…...

一步步构建自己的前端项目

一、我们先把webpack走通 1、先安装相关依赖&#xff0c;webpack是用来处理命令行参数的&#xff0c;但是我不准备使用webpack-cli&#xff0c;但是还是要求必须安装webpack-cli npm install webapck webpack-cli --save-dev2、npm init -y 3、创建项目结构 build.js cons…...

VMware搭建Mac OS环境

推荐阅读 Proxifier逆向分析(Mac) MacOS Burp2021安装配置 突破iOS App双向认证抓包 App绕过iOS手机的越狱检测 iOS系统抓包入门实践之短链 各种学习环境更新MacOS虚拟机 Android和iOS静态代码扫描工具 iOS系统抓包之短链-破解双向证书 Android和iOS应用源码的静态分析…...

【Maven】什么是Maven?Maven有什么用?

目录 一、什么是 Maven 二、Maven 能解决什么问题 三、Maven 的优势举例 四、Maven 的两个经典作用 4.1 Maven 的依赖管理 4. 2 项目的一键构建 &#x1f49f; 创作不易&#xff0c;不妨点赞&#x1f49a;评论❤️收藏&#x1f499;一下 一、什么是 Maven Maven 的正确发…...

【JavaSE】类和对象的详解

前言&#xff1a; 大家好&#xff0c;我还是那个不会打拳的程序猿。今天我给大家讲解的是类和对象&#xff0c;相信大家在之前的学习中都是面向过程的思想&#xff0c;那么今天就让我们走向面向对象的世界吧。 目录 1.面向过程VS面向对象 1.1什么是面向过程 1.2什么是面向对…...

建筑人才信息网查询/苏州seo快速优化

1 调高osd的日志等级加上红框那一行就可以了osd的日志路径&#xff1a;/var/log/ceph/ceph-osd.3.log注意&#xff1a;加上了这一行后日志会刷很多&#xff0c;所以要特别注意日志容量的变化&#xff0c;以防把var目录写满了2缺少osdmap或者错误的osdmap从osd日志中发现这两种…...

小米路由器 wordpress/优化网络

http://blog.csdn.net/qwe6112071/article/details/50991563 Quartz框架需求引入 在现实开发中&#xff0c;我们常常会遇到需要系统在特定时刻完成特定任务的需求&#xff0c;在《spring学习笔记(14)引介增强详解&#xff1a;定时器实例&#xff1a;无侵入式动态增强类功能》&a…...

国内优秀企业网站/帆软社区app

最近情人节要来了也&#xff0c;翻出我以前的博客~有空附上完整的代码...

登录注册网站怎么做/徐州seo企业

转载于:https://www.cnblogs.com/dyh-air/p/7807883.html...

网站幕布拍照什么样子的/视频推广

最近有一段时间&#xff0c;由于项目需要实现SQL Server数据库的异地备份。刚开始想到的是使用数据库的同步&#xff0c;在两台服务器上&#xff0c;安装SQL Server&#xff0c;然后建立数据库同步&#xff0c;再分别为每个服务器建立数据库维护计划&#xff0c;发现这样处理比…...

wordpress排队加载/百度爱企查电话人工服务总部

随机数在编程中非常重要&#xff0c;有些场合不得不使用随机数&#xff0c;如创建1000个满足0~1正太分布的随机数&#xff1b;有些场合可以避开使用随机数&#xff0c;但人为设置的数字显得呆板&#xff0c;最后还是选择随机数。 1、创建1000个满足0~1正太分布的随机数&#xf…...