当前位置: 首页 > news >正文

最长公共子序列求长度和输出子序列C代码

求两个字符串的公共子序列我们都知道需要使用用动态规划思想

用res[i][j]表示截止到字符串A的第i个字符串和截止到字符串B的第j个字符的最长公共子序列。如两个字符串helloworld和loop,res[5][3]表示子串hello和子串loo的最长公共子序列,为lo,长度为2

状态转移方程

当i=0或j=0时,res[i][j]=0

当A[i]=B[j]时,res[i][j]= res[i-1][j-1]+1

当A[i]≠B[j]时,res[i][j]= max(res[i][j-1], res[i-1][j])

但是这样只能算出来最长公共子序列的长度,如果需要输出子序列的话需要用回溯的方法,比较难。我们可以用一个三维字符型数组来做动态规划数组,这样既能得到实际的公共子序列,也能得到长度

定义变量

char s1[105];
char s2[105];
char dp[105][105][105]; // 使用三维dp数组

 具体实现

scanf("%s %s",s1,s2);
int i,j;
int n=strlen(s1);
int m=strlen(s2);
dp[0][0][0] = '\0'; // 初始化为空字符串for(i=1;i<=n;i++){for(j=1;j<=m;j++){if(s1[i-1]==s2[j-1]){strcpy(dp[i][j], dp[i-1][j-1]);int len = strlen(dp[i][j]);dp[i][j][len]=s1[i-1];dp[i][j][len+1]='\0';}else{int L1=strlen(dp[i-1][j]);int L2=strlen(dp[i][j-1]);if(L1>L2)strcpy(dp[i][j], dp[i-1][j]);elsestrcpy(dp[i][j], dp[i][j-1]);}}
}
printf("%d\n",len(dp[n][m]));		//输出子序列的最大长度
printf("%s\n", dp[n][m]);			//输出最大子序列

相关文章:

最长公共子序列求长度和输出子序列C代码

求两个字符串的公共子序列我们都知道需要使用用动态规划思想 用res[i][j]表示截止到字符串A的第i个字符串和截止到字符串B的第j个字符的最长公共子序列。如两个字符串helloworld和loop&#xff0c;res[5][3]表示子串hello和子串loo的最长公共子序列&#xff0c;为lo&#xff0…...

安卓Framework开发快速分析日志及定位源码

文章目录 如何区分源码中 main system events 日志查看 Activity 生命周期日志分析 events 日志在源码中位置应用进程ID助分析具体应用ProtoLog 动态开关日志如何快速定位相关流程的代码位置 本文首发地址 https://h89.cn/archives/285.html 最新更新地址 https://gitee.com/ch…...

数据结构算法之B树

一、绪论 1.1 数据结构的概念和作用 1.2 B树的起源和应用领域 二、B树的基本原理 2.1 B树的定义和特点 2.2 B树的结构和节点组成 2.3 B树的插入 2.4 B树的删除操作 三、B树的优势和应用 3.1 B树在数据库系统中的应用 3.2 B树在文件系统中的应用 3.3 B树在内存管理中…...

【图卷积网络】GCN基础原理简单python实现

基础原理讲解 应用路径 卷积网络最经典的就是CNN&#xff0c;其 可以提取图片中的有效信息&#xff0c;而生活中存在大量拓扑结构的数据。图卷积网络主要特点就是在于其输入数据是图结构数据&#xff0c;即 G ( V , E ) G(V,E) G(V,E)&#xff0c;其中V是节点&#xff0c;E是…...

【话题】AI是在帮助开发者还是取代他们

大家好&#xff0c;我是全栈小5&#xff0c;欢迎阅读小5的系列文章&#xff0c;这是《话题》系列文章 目录 引言AI在代码生成中的应用AI在错误检测和自动化测试中的作用对开发者职业前景的影响技能需求的变化与适应策略结论文章推荐 引言 随着人工智能&#xff08;AI&#xff…...

精通Perl正则表达式修饰符:提升文本处理能力的艺术

Perl语言以其强大的文本处理能力而闻名&#xff0c;其中正则表达式是其核心特性之一。正则表达式本身非常强大&#xff0c;但Perl提供的修饰符&#xff08;Modifiers&#xff09;进一步扩展了正则表达式的灵活性和表达能力。本文将深入探讨Perl中正则表达式修饰符的使用&#x…...

【web前端HTML+CSS+JS】--- HTML学习笔记01

学习链接&#xff1a;黑马程序员pink老师前端入门教程&#xff0c;零基础必看的h5(html5)css3移动端前端视频教程_哔哩哔哩_bilibili 学习文档&#xff1a; Web 开发技术 | MDN (mozilla.org) 一、前后端工作流程 WEB模型&#xff1a;前端用于采集和展示信息&#xff0c;中…...

Go 语言入门(一)

Go Modules依赖包查找机制 下载的第三方的依赖存储在 $GOPATH/pkg/mod 下go install 生成的可执行文件存储在 $GOPATH/bin下依赖查找顺序&#xff1a; 工作目录$GOPATH/pkg/mod$GOPATH/src 一、Go语言基础 1.标识符与关键字 1.1 命名方式 ​ go变量、常量、自定义类型、包…...

爬虫笔记20——票星球抢票脚本的实现

以下内容仅供交流学习使用&#xff01;&#xff01;&#xff01; 思路分析 前面的爬虫笔记一步一步走过来我们的技术水平也有了较大的提升了&#xff0c;现在我们来进行一下票星球抢票实战项目&#xff0c;实现票星球的自动抢票。 我们打开票星球的移动端页面&#xff0c;分…...

DDR3(三)

目录 1 预取1.1 什么是预取1.2 预取有哪些好处1.3 结构框图1.4 总结 2 突发2.1 什么是突发2.2 突发与预取 本文讲解DDR中常见的两个术语&#xff1a;预取和突发&#xff0c;对这两个概念理解的关键在于地址线的低位是否参与译码&#xff0c;具体内容请继续往下看。 1 预取 1.1…...

JDK都出到20多了,你还不会使用JDK8的Stream流写代码吗?

目录 前言 Stream流 是什么&#xff1f; 为什么要用Steam流 常见stream流使用案例 映射 map() & 集合 collect() 单字段映射 多字段映射 映射为其他的对象 映射为 Map 去重 distinct() 过滤 filter() Stream流的其他方法 使用Stream流的弊端 前言 当你某天看…...

QT slots 函数

文章目录 概述小结 概述 在Qt中&#xff0c;slots 是一种特殊的成员函数&#xff0c;它们可以与对象发出的信号连接。当信号被触发时&#xff0c;连接的槽函数会被调用。 来个简单的示例吧&#xff0c;如下图&#xff1a; #include <QObject> #include <QDebug>…...

pycharm如何使用jupyter

目录 配置jupyter新建jupyter文件别人写的方法&#xff08;在pycharm种安装&#xff0c;在网页中使用&#xff09; pycharm专业版 配置jupyter 在pycharm终端启动一个conda虚拟环境&#xff0c;输入 conda install jupyter会有很多前置包需要安装&#xff1a; 新建jupyter…...

机器学习——无监督学习(k-means算法)

1、K-Means聚类算法 K表示超参数个数&#xff0c;如分成几个类别&#xff0c;K值就取多少。若无需求&#xff0c;可使用网格搜索找到最佳的K。 步骤&#xff1a; 1、随机设置K个特征空间内的点作为初始聚类中心&#xff1b; 2、对于其他每个点计算到K个中心的距离&#xff0c;…...

强化学习-6 DDPG、PPO、SAC算法

文章目录 1 DPG方法2 DDPG算法3 DDPG算法的优缺点4 TD3算法4.1 双Q网络4.2 延迟更新4.3 噪声正则 5 附15.1 Ornstein-Uhlenbeck (OU) 噪声5.1.1 定义5.1.2 特性5.1.3 直观理解5.1.4 数学性质5.1.5 代码示例5.1.6 总结 6 重要性采样7 PPO算法8 附28.1 重要性采样方差计算8.1.1 公…...

vue3实现多表头列表el-table,拖拽,鼠标滑轮滚动条优化

需求背景解决效果index.vue 需求背景 需要实现多表头列表的用户体验优化 解决效果 index.vue <!--/** * author: liuk * date: 2024-07-03 * describe:**** 多表头列表 */--> <template><el-table ref"tableRef" height"calc(100% - 80px)&qu…...

Micron近期发布了32Gb DDR5 DRAM

Micron Technology近期发布了一项内存技术的重大突破——一款32Gb DDR5 DRAM芯片&#xff0c;这项创新不仅将存储容量翻倍&#xff0c;还显著提升了针对人工智能&#xff08;AI&#xff09;、机器学习&#xff08;ML&#xff09;、高性能计算&#xff08;HPC&#xff09;以及数…...

SQL Server时间转换

第一种&#xff1a;format --转化成年月日 select format( GETDATE(),yyyy-MM-dd) --转化年月日&#xff0c;时分秒&#xff0c;这里的HH指24小时的&#xff0c;hh是12小时的 select format( GETDATE(),yyyy-MM-dd HH:mm:ss) --转化成时分秒的&#xff0c;这里就不一样的&…...

kubernetes集群部署:node节点部署和CRI-O运行时安装(三)

关于CRI-O Kubernetes最初使用Docker作为默认的容器运行时。然而&#xff0c;随着Kubernetes的发展和OCI标准的确立&#xff0c;社区开始寻找更专门化的解决方案&#xff0c;以减少复杂性和提高性能。CRI-O的主要目标是提供一个轻量级的容器运行时&#xff0c;它可以直接运行O…...

03:Spring MVC

文章目录 一&#xff1a;Spring MVC简介1&#xff1a;说说自己对于Spring MVC的了解&#xff1f;1.1&#xff1a;流程说明&#xff1a; 一&#xff1a;Spring MVC简介 Spring MVC就是一个MVC框架&#xff0c;Spring MVC annotation式的开发比Struts2方便&#xff0c;可以直接代…...

UE5 学习系列(二)用户操作界面及介绍

这篇博客是 UE5 学习系列博客的第二篇&#xff0c;在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下&#xff1a; 【Note】&#xff1a;如果你已经完成安装等操作&#xff0c;可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作&#xff0c;重…...

RocketMQ延迟消息机制

两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数&#xff0c;对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后&#xf…...

Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?

Golang 面试经典题&#xff1a;map 的 key 可以是什么类型&#xff1f;哪些不可以&#xff1f; 在 Golang 的面试中&#xff0c;map 类型的使用是一个常见的考点&#xff0c;其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...

基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容

基于 ​UniApp + WebSocket​实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配​微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...

SpringTask-03.入门案例

一.入门案例 启动类&#xff1a; package com.sky;import lombok.extern.slf4j.Slf4j; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import org.springframework.cache.annotation.EnableCach…...

Netty从入门到进阶(二)

二、Netty入门 1. 概述 1.1 Netty是什么 Netty is an asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers & clients. Netty是一个异步的、基于事件驱动的网络应用框架&#xff0c;用于…...

【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论

路径问题的革命性重构&#xff1a;基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中&#xff08;图1&#xff09;&#xff1a; mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...

OD 算法题 B卷【正整数到Excel编号之间的转换】

文章目录 正整数到Excel编号之间的转换 正整数到Excel编号之间的转换 excel的列编号是这样的&#xff1a;a b c … z aa ab ac… az ba bb bc…yz za zb zc …zz aaa aab aac…; 分别代表以下的编号1 2 3 … 26 27 28 29… 52 53 54 55… 676 677 678 679 … 702 703 704 705;…...

适应性Java用于现代 API:REST、GraphQL 和事件驱动

在快速发展的软件开发领域&#xff0c;REST、GraphQL 和事件驱动架构等新的 API 标准对于构建可扩展、高效的系统至关重要。Java 在现代 API 方面以其在企业应用中的稳定性而闻名&#xff0c;不断适应这些现代范式的需求。随着不断发展的生态系统&#xff0c;Java 在现代 API 方…...

Qt 事件处理中 return 的深入解析

Qt 事件处理中 return 的深入解析 在 Qt 事件处理中&#xff0c;return 语句的使用是另一个关键概念&#xff0c;它与 event->accept()/event->ignore() 密切相关但作用不同。让我们详细分析一下它们之间的关系和工作原理。 核心区别&#xff1a;不同层级的事件处理 方…...