论文解析——Full Stack Optimization of Transformer Inference: a Survey
作者及发刊详情
摘要
正文
主要工作贡献
这篇文章的贡献主要有两部分:
- 分析Transformer的特征,调查高效transformer推理的方法
- 通过应用方法学展现一个DNN加速器生成器Gemmini的case研究
1)分析和解析Transformer架构的运行时特性和瓶颈
2)Transformer推理的硬件架构
3)对特定Transformer架构的优化策略,比如剪枝和量化
4)Transformer架构下操作的映射和调度,以及相关挑战
5)通过自动化的神经架构搜索过程,设计和调整transformer架构,使其硬件更加高效
Transformer模型架构和性能瓶颈
transformer的基本架构
Transformer架构包含两个模块:MHA和FFN
Transformer架构的参数如下:

对Transformer架构的输入序列包含l个token,每个值都由一个d维度的向量表示,构成了 d ∗ l d*l d∗l的矩阵。token可以是一个词或一个句子片段。
MHA的计算特征
MHA有三种不同的权重 W Q W_Q WQ、 W K W_K WK、 W V W_V WV,具体执行流如图1所示,这些权重将会产生三种不同的激活,每种激活会被分成h个块(chunk,有隐藏维度d/h),因此这些块都被分成了h个不同的注意力头。q块和k块沿着隐藏层相乘,生成 l ∗ l l*l l∗l 大小的激活矩阵,这些激活矩阵经过softmax操作,与v块相乘,得到attention头的激活,然后h个head组合生成结果 W o u t W_{out} Wout。每阶段的计算结果如Table2所示。最终线性层的输出经过残差链接和层归一化生成MHA模块的输出。
MHA总共有6个线性操作,其中4个是权重到激活的矩阵乘( W Q W_Q WQ、 W K W_K WK、 W V W_V WV、 W o u t W_{out} Wout),另外两个是激活到激活的矩阵乘( q u e r y ∗ k e y query*key query∗key、 a t t e n t i o n . s c o r e ∗ v a l u e attention.score*value attention.score∗value),本文将前者称为投影(projection),后者称为激活到激活矩阵乘。
FFN包含两个线性层操作, d F F N d_FFN dFFN通常是 d d d的四倍,在两个线性层间有一个非线性层。

非线性操作的特征
非线性操作,包括Softmax, LayerNorm, 和 GELU需要片外计算的支持,虽然全部操作中占据了较小部分,但比矩阵乘更具挑战,如果处理不当将会产生额外的开销。
在有效利用临时内存和高效计算方面提出了挑战
需要在运行时传递所有的输入值,这些值都会保存在临时存储中。
比如softmax操作包括求指数操作、跨序列长维度的求和、每个指数向除以求和结果的归一化操作,需要解决指数溢出问题。
计算LayerNorm函数还需要跨隐藏维度多次传递整个输入值,先计算平均值,再计算标准差,然后再使用层归一化
encoder和decoder架构
encoder可以并行处理输入序列
encoder-only适合用于自然语言理解任务(sentiment analysis、sentence similarity analysis)
decoder一次只能推理出一个token,适合用于生成式任务

产生token的共同优化方法:在后续的迭代中,缓存和复用之前生成的token中间的K和V值
生成的token后继续传入到decoder的输入,复用可以节省计算时间。
模型的算力密度
矩阵乘在encoder-only和decoder-only中消耗了99%的FLOPS。


模型优化
硬件设计
参考文献
评
这是一篇关于Transformer推理的全栈技术综述
相关文章:
论文解析——Full Stack Optimization of Transformer Inference: a Survey
作者及发刊详情 摘要 正文 主要工作贡献 这篇文章的贡献主要有两部分: 分析Transformer的特征,调查高效transformer推理的方法通过应用方法学展现一个DNN加速器生成器Gemmini的case研究 1)分析和解析Transformer架构的运行时特性和瓶颈…...
selenium处理cookie问题实战
1. cookie获取不完整 需要进入的资损平台(web)首页,才会出现有效的ctoken等信息 1.1. 原因说明 未进入指定页面而获取的 cookie 与进入页面后获取的 cookie 可能会有一些差异,这取决于网站的具体实现和 cookie 的设置方式。 通常情况下,一些…...
(十五)GLM库对矩阵操作
GLM简单使用 glm是一个开源的对矩阵运算的库,下载地址: https://github.com/g-truc/glm/releases 直接包含其头文件即可使用: #include <glad/glad.h>//glad必须在glfw头文件之前包含 #include <GLFW/glfw3.h> #include <io…...
android中activity与fragment之间的各种跳转
我们以音乐播放、视频播放、用户注册与登录为例【Musicfragment(音乐列表页)、Videofragment(视频列表页)、MusicAvtivity(音乐详情页)、VideoFragment(视频详情页)、LoginActivity&…...
动态规划算法-以中学排课管理系统为例
1.动态规划算法介绍 1.算法思路 动态规划算法通常用于求解具有某种最优性质的问题。在这类问题中,可能会有许多可行解。每一个解都对应于一个值,我们希望找到具有最优值的解。动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若…...
本安防爆手机:危险环境下的安全通信解决方案
在石油化工、煤矿、天然气等危险环境中,通信安全是保障工作人员生命安全和生产顺利进行的关键。防爆智能手机作为专为这些环境设计的通信工具,提供了全方位的安全通信解决方案。 防爆设计与材料: 防爆智能手机采用特殊的防爆结构和材料&…...
算法学习笔记(8)-动态规划基础篇
目录 基础内容: 动态规划: 动态规划理解的问题引入: 解析:(暴力回溯) 代码示例: 暴力搜索: Dfs代码示例:(搜索) 暴力递归产生的递归树&…...
数据库常见问题(持续更新)
数据库常见问题(持续更新) 1、数据库范式? 1NF:不可分割2NF:没有非主属性对候选码存在部分依赖3NF:没有非主属性传递依赖候选码BCNF:消除了主属性对对候选码的传递依赖或部分依赖 2、InnoDB事务的实现? …...
定个小目标之刷LeetCode热题(40)
94. 二叉树的中序遍历 给定一个二叉树的根节点 root ,返回 它的 中序 遍历 。 直接上代码吧,中序遍历左根右 class Solution {public List<Integer> inorderTraversal(TreeNode root) {List<Integer> res new ArrayList<Integer>(…...
Linux--线程(概念篇)
目录 1.背景知识 再谈地址空间: 关于页表(32bit机器上) 2.线程的概念和Linux中线程的实现 概念部分: 代码部分: 问题: 3.关于线程的有点与缺点 4.进程VS线程 1.背景知识 再谈地址空间:…...
Mojo: 轻量级Perl框架的魔力
在Perl的丰富生态系统中,Mojolicious(简称Mojo)是一个轻量级的实时Web框架,以其极简的API和强大的功能而受到开发者的喜爱。Mojo不仅适用于构建高性能的Web应用,还可以用来编写简单的脚本和命令行工具。本文将带你探索…...
Python 游戏服务器架构优化
优化 Python 游戏服务器的架构涉及多个方面,包括性能、可伸缩性、并发处理和网络通信。下面是一些优化建议: 1、问题背景 在设计 Python 游戏服务器时,如何实现服务器的横向扩展,以利用多核处理器的资源,并确保服务器…...
13 学习总结:指针 · 其一
目录 一、内存和地址 (一)内存 (二)内存单元 (三)地址 (四)拓展:CPU与内存的联系 二、指针变量和地址 (一)创建变量的本质 (二…...
golang 项目打包部署环境变量设置
最近将 golang 项目打包部署在不同环境,总结一下自己的心得体会,供大家参考。 1、首先要明确自己目标服务器的系统类型(例如 windows 或者Linux) ,如果是Linux 还需要注意目标服务器的CPU架构(amd或者arm) 目标服务器的CPU架构可执行命令&…...
【Linux进程】进程优先级 Linux 2.6内核进程的调度
目录 前言 1. 进程优先级 2. 并发 3. Linux kernel 2.6 内核调度队列与调度原理 总结 前言 进程是资源分配的基本单位, 在OS中存在这很多的进程, 那么就必然存在着资源竞争的问题, 操作系统是如何进行资源分配的? 对于多个进程同时运行, 操作系统又是如何调度达到并发呢?…...
Linux中的粘滞位及mysql日期函数
只要用户具有目录的写权限, 用户就可以删除目录中的文件, 而不论这个用户是否有这个文件的写 权限. 为了解决这个不科学的问题, Linux引入了粘滞位的概念. 粘滞位 当一个目录被设置为"粘滞位"(用chmod t),则该目录下的文件只能由 一、超级管理员删除 二、该目录…...
BP神经网络的实践经验
目录 一、BP神经网络基础知识 1.BP神经网络 2.隐含层选取 3.激活函数 4.正向传递 5.反向传播 6.不拟合与过拟合 二、BP神经网络设计流程 1.数据处理 2.网络搭建 3.网络运行过程 三、BP神经网络优缺点与改进方案 1.BP神经网络的优缺点 2.改进方案 一、BP神经网络基…...
PCL 点云FPFH特征描述子
点云FPFH特征描述子 一、概述1.1 FPFH概念1.2 基本原理1.3 PFH和FPFH的区别二、代码实现三、结果示例一、概述 1.1 FPFH概念 快速点特征直方图(FPFH)描述子:计算 PFH 特征的效率其实是十分低的,这样的算法复杂度无法实现实时或接近实时的应用。因此,这篇文章将介绍 PFH 的简…...
基于golang的文章信息抓取
基于golang的文章信息抓取 学习golang爬虫,实现广度爬取,抓取特定的网页地址:测试站点新笔趣阁(https://www.xsbiquge.com/) 主要学习golang的goroutine和channel之间的协作,无限爬取站点小说的地址仅限书目…...
【手撕数据结构】卸甲时/空间复杂度
目录 前言时间复杂度概念⼤O的渐进表⽰法小试牛刀 空间复杂度 前言 要想知道什么是空/时间复杂度,就得知道什么是数据结构。 这得分两层来理解。我们生活中处处存在数据,什么抖音热点上的国际大事,什么懂的都懂的雍正卸甲等等一系列我们用户看得到的&a…...
java_网络服务相关_gateway_nacos_feign区别联系
1. spring-cloud-starter-gateway 作用:作为微服务架构的网关,统一入口,处理所有外部请求。 核心能力: 路由转发(基于路径、服务名等)过滤器(鉴权、限流、日志、Header 处理)支持负…...
Zustand 状态管理库:极简而强大的解决方案
Zustand 是一个轻量级、快速和可扩展的状态管理库,特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...
解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八
现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet,点击确认后如下提示 最终上报fail 解决方法 内核升级导致,需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...
对WWDC 2025 Keynote 内容的预测
借助我们以往对苹果公司发展路径的深入研究经验,以及大语言模型的分析能力,我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际,我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测,聊作存档。等到明…...
unix/linux,sudo,其发展历程详细时间线、由来、历史背景
sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...
C++.OpenGL (10/64)基础光照(Basic Lighting)
基础光照(Basic Lighting) 冯氏光照模型(Phong Lighting Model) #mermaid-svg-GLdskXwWINxNGHso {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-GLdskXwWINxNGHso .error-icon{fill:#552222;}#mermaid-svg-GLd…...
MySQL账号权限管理指南:安全创建账户与精细授权技巧
在MySQL数据库管理中,合理创建用户账号并分配精确权限是保障数据安全的核心环节。直接使用root账号进行所有操作不仅危险且难以审计操作行为。今天我们来全面解析MySQL账号创建与权限分配的专业方法。 一、为何需要创建独立账号? 最小权限原则…...
高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数
高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数 在软件开发中,单例模式(Singleton Pattern)是一种常见的设计模式,确保一个类仅有一个实例,并提供一个全局访问点。在多线程环境下,实现单例模式时需要注意线程安全问题,以防止多个线程同时创建实例,导致…...
算法岗面试经验分享-大模型篇
文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer (1)资源 论文&a…...
使用SSE解决获取状态不一致问题
使用SSE解决获取状态不一致问题 1. 问题描述2. SSE介绍2.1 SSE 的工作原理2.2 SSE 的事件格式规范2.3 SSE与其他技术对比2.4 SSE 的优缺点 3. 实战代码 1. 问题描述 目前做的一个功能是上传多个文件,这个上传文件是整体功能的一部分,文件在上传的过程中…...
