当前位置: 首页 > news >正文

【AutoencoderKL】基于stable-diffusion-v1.4的vae对图像重构

模型地址:https://huggingface.co/CompVis/stable-diffusion-v1-4/tree/main/vae
主要参考:Using-Stable-Diffusion-VAE-to-encode-satellite-images
在这里插入图片描述

sd1.4 vae

下载到本地

from diffusers import AutoencoderKL
from PIL import Image
import  torch
import torchvision.transforms as T#  ./huggingface/stable-diffusion-v1-4/vae 切换为任意本地路径
vae = AutoencoderKL.from_pretrained("./huggingface/stable-diffusion-v1-4/vae",variant='fp16')
# c:\Users\zeng\Downloads\vae_config.jsondef encode_img(input_img):# Single image -> single latent in a batch (so size 1, 4, 64, 64)# Transform the image to a tensor and normalize ittransform = T.Compose([# T.Resize((256, 256)),T.ToTensor()])input_img = transform(input_img)if len(input_img.shape)<4:input_img = input_img.unsqueeze(0)with torch.no_grad():latent = vae.encode(input_img*2 - 1) # Note scalingreturn 0.18215 * latent.latent_dist.sample()def decode_img(latents):# bath of latents -> list of imageslatents = (1 / 0.18215) * latentswith torch.no_grad():image = vae.decode(latents).sampleimage = (image / 2 + 0.5).clamp(0, 1)image = image.detach().cpu()# image = T.Resize(original_size)(image.squeeze())return T.ToPILImage()(image.squeeze())if __name__ == '__main__':# Load an example imageinput_img = Image.open("huge.jpg")original_size = input_img.sizeprint('original_size',original_size)# Encode and decode the imagelatents = encode_img(input_img)reconstructed_img = decode_img(latents)# Save the reconstructed imagereconstructed_img.save("reconstructed_example2.jpg")# Concatenate the original and reconstructed imagesconcatenated_img = Image.new('RGB', (original_size[0] * 2, original_size[1]))concatenated_img.paste(input_img, (0, 0))concatenated_img.paste(reconstructed_img, (original_size[0], 0))# Save the concatenated imageconcatenated_img.save("concatenated_example2.jpg")

相关文章:

【AutoencoderKL】基于stable-diffusion-v1.4的vae对图像重构

模型地址&#xff1a;https://huggingface.co/CompVis/stable-diffusion-v1-4/tree/main/vae 主要参考:Using-Stable-Diffusion-VAE-to-encode-satellite-images sd1.4 vae 下载到本地 from diffusers import AutoencoderKL from PIL import Image import torch import to…...

《警世贤文》摘抄:守法篇、惜时篇、修性篇、修身篇、待人篇、防人篇(建议多读书、多看报、少吃零食多睡觉)

若该文为原创文章&#xff0c;转载请注明原文出处 本文章博客地址&#xff1a;https://hpzwl.blog.csdn.net/article/details/140243440 长沙红胖子Qt&#xff08;长沙创微智科&#xff09;博文大全&#xff1a;开发技术集合&#xff08;包含Qt实用技术、树莓派、三维、OpenCV…...

vue2+element-ui新增编辑表格+删除行

实现效果&#xff1a; 代码实现 &#xff1a; <el-table :data"dataForm.updateData"border:header-cell-style"{text-align:center}":cell-style"{text-align:center}"><el-table-column label"选项字段"align"center&…...

Day05-组织架构-角色管理

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 1.组织架构-编辑部门-弹出层获取数据2.组织架构-编辑部门-编辑表单校验3.组织架构-编辑部门-确认取消4.组织架构-删除部门5.角色管理-搭建页面结构6.角色管理-获取数…...

【LLM】二、python调用本地的ollama部署的大模型

系列文章目录 往期文章&#xff1a; 【LLM】一、利用ollama本地部署大模型 目录 文章目录 前言 一、ollama库调用 二、langchain调用 三、requests调用 四、相关参数说明&#xff1a; 总结 前言 本地部署了大模型&#xff0c;下一步任务便是如何调用的问题&#xff0c…...

20240708 每日AI必读资讯

&#x1f916;破解ChatGPT惊人耗电&#xff01;DeepMind新算法训练提效13倍&#xff0c;能耗暴降10倍 - 谷歌DeepMind研究团队提出了一种加快AI训练的新方法——多模态对比学习与联合示例选择&#xff08;JEST&#xff09;&#xff0c;大大减少了所需的计算资源和时间。 - JE…...

为什么KV Cache只需缓存K矩阵和V矩阵,无需缓存Q矩阵?

大家都知道大模型是通过语言序列预测下一个词的概率。假定{ x 1 x_1 x1​&#xff0c; x 2 x_2 x2​&#xff0c; x 3 x_3 x3​&#xff0c;…&#xff0c; x n − 1 x_{n-1} xn−1​}为已知序列&#xff0c;其中 x 1 x_1 x1​&#xff0c; x 2 x_2 x2​&#xff0c; x 3 x_3 x…...

VS code修改底部的行号的状态栏颜色

VSCode截图 相信很多小伙伴被底部的蓝色状态栏困扰很久了 处理的方式有两种&#xff1a; 1、隐藏状态栏 2、修改其背景颜色 第一种方法大伙都会&#xff0c;今天就使用第二种方法。 1、点击齿轮进入setting 2、我现在用的新版本&#xff0c;设置不是以前那种json格式展示&…...

【鸿蒙学习笔记】MVVM模式

官方文档&#xff1a;MVVM模式 [Q&A] 什么是MVVM ArkUI采取MVVM Model View ViewModel模式。 Model层&#xff1a;存储数据和相关逻辑的模型。View层&#xff1a;在ArkUI中通常是Component装饰组件渲染的UI。ViewModel层&#xff1a;在ArkUI中&#xff0c;ViewModel是…...

端、边、云三级算力网络

目录 端、边、云三级算力网络 NPU Arm架构 OpenStack kubernetes k3s轻量级Kubernetes kubernetes和docker区别 DCI(Data Center Interconnect) SD/WAN TF 端、边、云三级算力网络 算力网络从传统云网融合的角度出发,结合 边缘计算、网络云化以及智能控制的优势,通…...

java —— JSP 技术

一、JSP &#xff08;一&#xff09;前言 1、.jsp 与 .html 一样属于前端内容&#xff0c;创建在 WebContent 之下&#xff1b; 2、嵌套的 java 语句放置在<% %>里面&#xff1b; 3、嵌套 java 语句的三种语法&#xff1a; ① 脚本&#xff1a;<% java 代码 %>…...

【Python学习笔记】菜鸟教程Scrapy案例 + B站amazon案例视频

背景前摇&#xff08;省流可以跳过这部分&#xff09; 实习的时候厚脸皮请教了一位办公室负责做爬虫这块的老师&#xff0c;给我推荐了Scrapy框架。 我之前学过一些爬虫基础&#xff0c;但是用的是比较常见的BeautifulSoup和Request&#xff0c;于是得到Scrapy这个关键词后&am…...

Pycharm的终端(Terminal)中切换到当前项目所在的虚拟环境

1.在Pycharm最下端点击终端/Terminal, 2.点击终端窗口最上端最右边的∨&#xff0c; 3.点击Command Prompt&#xff0c;切换环境&#xff0c; 可以看到现在环境已经由默认的PS(Window PowerShell)切换为项目所使用的虚拟环境。 4.更近一步&#xff0c;如果想让Pycharm默认显示…...

Nginx 高效加速策略:动静分离与缓存详解

在现代Web开发中&#xff0c;网站性能是衡量用户体验的关键指标之一。Nginx&#xff0c;以其出色的性能和灵活性&#xff0c;成为众多网站架构中不可或缺的一部分。本文将深度解析如何利用Nginx实现动静分离与缓存&#xff0c;从而大幅提升网站加载速度和响应效率。 理解动静分…...

Unity3D 游戏摇杆的制作与实现详解

在Unity3D游戏开发中&#xff0c;摇杆是一种非常常见的输入方式&#xff0c;特别适用于移动设备的游戏控制。本文将详细介绍如何在Unity3D中制作和实现一个虚拟摇杆&#xff0c;包括技术详解和代码实现。 对惹&#xff0c;这里有一个游戏开发交流小组&#xff0c;大家可以点击…...

从nginx返回404来看http1.0和http1.1的区别

序言 什么样的人可以称之为有智慧的人呢&#xff1f;如果下一个定义&#xff0c;你会如何来定义&#xff1f; 所谓智慧&#xff0c;就是能区分自己能改变的部分&#xff0c;自己无法改变的部分&#xff0c;努力去做自己能改变的&#xff0c;而不要天天想着那些无法改变的东西&a…...

MySQL 代理层:ProxySQL

文章目录 说明安装部署1.1 yum 安装1.2 启停管理1.3 查询版本1.4 Admin 管理接口 入门体验功能介绍3.1 多层次配置系统 读写分离将实例接入到代理服务定义主机组之间的复制关系配置路由规则事务读的配置延迟阈值和请求转发 ProxySQL 核心表mysql_usersmysql_serversmysql_repli…...

异步主从复制

主从复制的概念 主从复制是一种在数据库系统中常用的数据备份和读取扩展技术&#xff0c;通过将一个数据库服务器&#xff08;主服务器&#xff09;上的数据变更自动同步到一个或多个数据库服务器&#xff08;从服务器&#xff09;上&#xff0c;以此来实现数据的冗余备份、读…...

论文解析——Full Stack Optimization of Transformer Inference: a Survey

作者及发刊详情 摘要 正文 主要工作贡献 这篇文章的贡献主要有两部分&#xff1a; 分析Transformer的特征&#xff0c;调查高效transformer推理的方法通过应用方法学展现一个DNN加速器生成器Gemmini的case研究 1&#xff09;分析和解析Transformer架构的运行时特性和瓶颈…...

selenium处理cookie问题实战

1. cookie获取不完整 需要进入的资损平台(web)首页&#xff0c;才会出现有效的ctoken等信息 1.1. 原因说明 未进入指定页面而获取的 cookie 与进入页面后获取的 cookie 可能会有一些差异&#xff0c;这取决于网站的具体实现和 cookie 的设置方式。 通常情况下&#xff0c;一些…...

Vue记事本应用实现教程

文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展&#xff1a;显示创建时间8. 功能扩展&#xff1a;记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...

CMake基础:构建流程详解

目录 1.CMake构建过程的基本流程 2.CMake构建的具体步骤 2.1.创建构建目录 2.2.使用 CMake 生成构建文件 2.3.编译和构建 2.4.清理构建文件 2.5.重新配置和构建 3.跨平台构建示例 4.工具链与交叉编译 5.CMake构建后的项目结构解析 5.1.CMake构建后的目录结构 5.2.构…...

《通信之道——从微积分到 5G》读书总结

第1章 绪 论 1.1 这是一本什么样的书 通信技术&#xff0c;说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号&#xff08;调制&#xff09; 把信息从信号中抽取出来&am…...

Java 加密常用的各种算法及其选择

在数字化时代&#xff0c;数据安全至关重要&#xff0c;Java 作为广泛应用的编程语言&#xff0c;提供了丰富的加密算法来保障数据的保密性、完整性和真实性。了解这些常用加密算法及其适用场景&#xff0c;有助于开发者在不同的业务需求中做出正确的选择。​ 一、对称加密算法…...

CSS设置元素的宽度根据其内容自动调整

width: fit-content 是 CSS 中的一个属性值&#xff0c;用于设置元素的宽度根据其内容自动调整&#xff0c;确保宽度刚好容纳内容而不会超出。 效果对比 默认情况&#xff08;width: auto&#xff09;&#xff1a; 块级元素&#xff08;如 <div>&#xff09;会占满父容器…...

Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习)

Aspose.PDF 限制绕过方案&#xff1a;Java 字节码技术实战分享&#xff08;仅供学习&#xff09; 一、Aspose.PDF 简介二、说明&#xff08;⚠️仅供学习与研究使用&#xff09;三、技术流程总览四、准备工作1. 下载 Jar 包2. Maven 项目依赖配置 五、字节码修改实现代码&#…...

Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战

说明&#xff1a;这是一个机器学习实战项目&#xff08;附带数据代码文档&#xff09;&#xff0c;如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下&#xff0c;风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...

基于SpringBoot在线拍卖系统的设计和实现

摘 要 随着社会的发展&#xff0c;社会的各行各业都在利用信息化时代的优势。计算机的优势和普及使得各种信息系统的开发成为必需。 在线拍卖系统&#xff0c;主要的模块包括管理员&#xff1b;首页、个人中心、用户管理、商品类型管理、拍卖商品管理、历史竞拍管理、竞拍订单…...

虚拟电厂发展三大趋势:市场化、技术主导、车网互联

市场化&#xff1a;从政策驱动到多元盈利 政策全面赋能 2025年4月&#xff0c;国家发改委、能源局发布《关于加快推进虚拟电厂发展的指导意见》&#xff0c;首次明确虚拟电厂为“独立市场主体”&#xff0c;提出硬性目标&#xff1a;2027年全国调节能力≥2000万千瓦&#xff0…...

mac 安装homebrew (nvm 及git)

mac 安装nvm 及git 万恶之源 mac 安装这些东西离不开Xcode。及homebrew 一、先说安装git步骤 通用&#xff1a; 方法一&#xff1a;使用 Homebrew 安装 Git&#xff08;推荐&#xff09; 步骤如下&#xff1a;打开终端&#xff08;Terminal.app&#xff09; 1.安装 Homebrew…...