当前位置: 首页 > news >正文

Unity3D 游戏摇杆的制作与实现详解

在Unity3D游戏开发中,摇杆是一种非常常见的输入方式,特别适用于移动设备的游戏控制。本文将详细介绍如何在Unity3D中制作和实现一个虚拟摇杆,包括技术详解和代码实现。

对惹,这里有一个游戏开发交流小组,大家可以点击进来一起交流一下开发经验呀!

技术详解

1. 摇杆组件结构

虚拟摇杆主要由以下几个部分组成:

  • 父物体(Joystick):作为摇杆的容器,用于管理其他子物体。
  • 背景(Background):显示摇杆的范围,通常是一个圆形或方形图像。
  • 手柄(Knob):可移动部分,用户通过拖拽它来控制游戏对象。

2. 摇杆逻辑

摇杆的逻辑主要涉及以下几个步骤:

  • 初始化:记录手柄的初始位置。
  • 拖拽:根据用户的触摸或鼠标点击位置计算手柄的新位置,并限制在背景范围内。
  • 计算方向:根据手柄的当前位置计算摇杆的方向。
  • 释放:当用户释放触摸或鼠标时,将手柄重置到初始位置,并清除方向。

3. 脚本编写

为了实现上述逻辑,需要编写一个C#脚本,并附加到摇杆的父物体上。脚本需要处理拖拽事件、指针按下和释放事件。

代码实现

以下是一个简单的虚拟摇杆脚本实现:

csharp复制代码
using UnityEngine;
using UnityEngine.EventSystems;
public class VirtualJoystick : MonoBehaviour, IDragHandler, IPointerUpHandler, IPointerDownHandler
{
[SerializeField] private RectTransform m_JoystickBackground;
[SerializeField] private RectTransform m_JoystickKnob;
private Vector2 m_joystickPosition;
private Vector2 m_joystickDirection;
public float JoystickSensitivity = 1f;
void Start()
{
m_joystickPosition = m_JoystickKnob.anchoredPosition;
}
public virtual void OnDrag(PointerEventData eventData)
{
Vector2 position = Vector2.zero;
if (RectTransformUtility.ScreenPointToLocalPointInRectangle(m_JoystickBackground, eventData.position, eventData.pressEventCamera, out position))
{
Vector2 clampedPosition = Vector2.ClampMagnitude(position - m_joystickPosition, m_JoystickBackground.rect.width * 0.5f);
m_JoystickKnob.anchoredPosition = clampedPosition;
m_joystickDirection = clampedPosition.normalized;
}
}
public virtual void OnPointerDown(PointerEventData eventData)
{
OnDrag(eventData);
}
public virtual void OnPointerUp(PointerEventData eventData)
{
m_JoystickKnob.anchoredPosition = m_joystickPosition;
m_joystickDirection = Vector2.zero;
}
public Vector2 GetJoystickDirection()
{
return m_joystickDirection * JoystickSensitivity;
}
}

脚本解析

  • 字段
    • m_JoystickBackground 和 m_JoystickKnob 分别用于存储背景和手柄的 RectTransform 组件。
    • m_joystickPosition 存储手柄的初始位置。
    • m_joystickDirection 存储当前摇杆的方向。
    • JoystickSensitivity 用于调整摇杆的灵敏度。

  • 方法
    • Start() 方法中,记录手柄的初始位置。
    • OnDrag() 方法处理拖拽事件,计算手柄的新位置并限制在背景范围内,同时更新摇杆方向。
    • OnPointerDown() 和 OnPointerUp() 方法分别处理指针按下和释放事件,OnPointerDown() 调用 OnDrag() 以实现按下即移动的效果。
    • GetJoystickDirection() 方法返回摇杆的方向值,乘以灵敏度以调整输出。

总结

通过以上步骤和代码实现,你可以在Unity3D中创建一个基本的虚拟摇杆,用于控制游戏对象的移动或其他操作。你可以根据实际需求调整摇杆的样式、大小和灵敏度等参数,以满足不同游戏的需求。希望这篇文章对你有所帮助!

更多教学视频

Unity3D​www.bycwedu.com/promotion_channels/2146264125

相关文章:

Unity3D 游戏摇杆的制作与实现详解

在Unity3D游戏开发中,摇杆是一种非常常见的输入方式,特别适用于移动设备的游戏控制。本文将详细介绍如何在Unity3D中制作和实现一个虚拟摇杆,包括技术详解和代码实现。 对惹,这里有一个游戏开发交流小组,大家可以点击…...

从nginx返回404来看http1.0和http1.1的区别

序言 什么样的人可以称之为有智慧的人呢?如果下一个定义,你会如何来定义? 所谓智慧,就是能区分自己能改变的部分,自己无法改变的部分,努力去做自己能改变的,而不要天天想着那些无法改变的东西&a…...

MySQL 代理层:ProxySQL

文章目录 说明安装部署1.1 yum 安装1.2 启停管理1.3 查询版本1.4 Admin 管理接口 入门体验功能介绍3.1 多层次配置系统 读写分离将实例接入到代理服务定义主机组之间的复制关系配置路由规则事务读的配置延迟阈值和请求转发 ProxySQL 核心表mysql_usersmysql_serversmysql_repli…...

异步主从复制

主从复制的概念 主从复制是一种在数据库系统中常用的数据备份和读取扩展技术,通过将一个数据库服务器(主服务器)上的数据变更自动同步到一个或多个数据库服务器(从服务器)上,以此来实现数据的冗余备份、读…...

论文解析——Full Stack Optimization of Transformer Inference: a Survey

作者及发刊详情 摘要 正文 主要工作贡献 这篇文章的贡献主要有两部分: 分析Transformer的特征,调查高效transformer推理的方法通过应用方法学展现一个DNN加速器生成器Gemmini的case研究 1)分析和解析Transformer架构的运行时特性和瓶颈…...

selenium处理cookie问题实战

1. cookie获取不完整 需要进入的资损平台(web)首页,才会出现有效的ctoken等信息 1.1. 原因说明 未进入指定页面而获取的 cookie 与进入页面后获取的 cookie 可能会有一些差异,这取决于网站的具体实现和 cookie 的设置方式。 通常情况下,一些…...

(十五)GLM库对矩阵操作

GLM简单使用 glm是一个开源的对矩阵运算的库&#xff0c;下载地址&#xff1a; https://github.com/g-truc/glm/releases 直接包含其头文件即可使用&#xff1a; #include <glad/glad.h>//glad必须在glfw头文件之前包含 #include <GLFW/glfw3.h> #include <io…...

android中activity与fragment之间的各种跳转

我们以音乐播放、视频播放、用户注册与登录为例【Musicfragment&#xff08;音乐列表页&#xff09;、Videofragment&#xff08;视频列表页&#xff09;、MusicAvtivity&#xff08;音乐详情页&#xff09;、VideoFragment&#xff08;视频详情页&#xff09;、LoginActivity&…...

动态规划算法-以中学排课管理系统为例

1.动态规划算法介绍 1.算法思路 动态规划算法通常用于求解具有某种最优性质的问题。在这类问题中&#xff0c;可能会有许多可行解。每一个解都对应于一个值&#xff0c;我们希望找到具有最优值的解。动态规划算法与分治法类似&#xff0c;其基本思想也是将待求解问题分解成若…...

本安防爆手机:危险环境下的安全通信解决方案

在石油化工、煤矿、天然气等危险环境中&#xff0c;通信安全是保障工作人员生命安全和生产顺利进行的关键。防爆智能手机作为专为这些环境设计的通信工具&#xff0c;提供了全方位的安全通信解决方案。 防爆设计与材料&#xff1a; 防爆智能手机采用特殊的防爆结构和材料&…...

算法学习笔记(8)-动态规划基础篇

目录 基础内容&#xff1a; 动态规划&#xff1a; 动态规划理解的问题引入&#xff1a; 解析&#xff1a;&#xff08;暴力回溯&#xff09; 代码示例&#xff1a; 暴力搜索&#xff1a; Dfs代码示例&#xff1a;&#xff08;搜索&#xff09; 暴力递归产生的递归树&…...

数据库常见问题(持续更新)

数据库常见问题(持续更新) 1、数据库范式&#xff1f; 1NF&#xff1a;不可分割2NF&#xff1a;没有非主属性对候选码存在部分依赖3NF&#xff1a;没有非主属性传递依赖候选码BCNF&#xff1a;消除了主属性对对候选码的传递依赖或部分依赖 2、InnoDB事务的实现&#xff1f; …...

定个小目标之刷LeetCode热题(40)

94. 二叉树的中序遍历 给定一个二叉树的根节点 root &#xff0c;返回 它的 中序 遍历 。 直接上代码吧&#xff0c;中序遍历左根右 class Solution {public List<Integer> inorderTraversal(TreeNode root) {List<Integer> res new ArrayList<Integer>(…...

Linux--线程(概念篇)

目录 1.背景知识 再谈地址空间&#xff1a; 关于页表&#xff08;32bit机器上&#xff09; 2.线程的概念和Linux中线程的实现 概念部分&#xff1a; 代码部分&#xff1a; 问题&#xff1a; 3.关于线程的有点与缺点 4.进程VS线程 1.背景知识 再谈地址空间&#xff1a…...

Mojo: 轻量级Perl框架的魔力

在Perl的丰富生态系统中&#xff0c;Mojolicious&#xff08;简称Mojo&#xff09;是一个轻量级的实时Web框架&#xff0c;以其极简的API和强大的功能而受到开发者的喜爱。Mojo不仅适用于构建高性能的Web应用&#xff0c;还可以用来编写简单的脚本和命令行工具。本文将带你探索…...

Python 游戏服务器架构优化

优化 Python 游戏服务器的架构涉及多个方面&#xff0c;包括性能、可伸缩性、并发处理和网络通信。下面是一些优化建议&#xff1a; 1、问题背景 在设计 Python 游戏服务器时&#xff0c;如何实现服务器的横向扩展&#xff0c;以利用多核处理器的资源&#xff0c;并确保服务器…...

13 学习总结:指针 · 其一

目录 一、内存和地址 &#xff08;一&#xff09;内存 &#xff08;二&#xff09;内存单元 &#xff08;三&#xff09;地址 &#xff08;四&#xff09;拓展&#xff1a;CPU与内存的联系 二、指针变量和地址 &#xff08;一&#xff09;创建变量的本质 &#xff08;二…...

golang 项目打包部署环境变量设置

最近将 golang 项目打包部署在不同环境&#xff0c;总结一下自己的心得体会&#xff0c;供大家参考。 1、首先要明确自己目标服务器的系统类型(例如 windows 或者Linux) &#xff0c;如果是Linux 还需要注意目标服务器的CPU架构(amd或者arm) 目标服务器的CPU架构可执行命令&…...

【Linux进程】进程优先级 Linux 2.6内核进程的调度

目录 前言 1. 进程优先级 2. 并发 3. Linux kernel 2.6 内核调度队列与调度原理 总结 前言 进程是资源分配的基本单位, 在OS中存在这很多的进程, 那么就必然存在着资源竞争的问题, 操作系统是如何进行资源分配的? 对于多个进程同时运行, 操作系统又是如何调度达到并发呢?…...

Linux中的粘滞位及mysql日期函数

只要用户具有目录的写权限, 用户就可以删除目录中的文件, 而不论这个用户是否有这个文件的写 权限. 为了解决这个不科学的问题, Linux引入了粘滞位的概念. 粘滞位 当一个目录被设置为"粘滞位"(用chmod t),则该目录下的文件只能由 一、超级管理员删除 二、该目录…...

BP神经网络的实践经验

目录 一、BP神经网络基础知识 1.BP神经网络 2.隐含层选取 3.激活函数 4.正向传递 5.反向传播 6.不拟合与过拟合 二、BP神经网络设计流程 1.数据处理 2.网络搭建 3.网络运行过程 三、BP神经网络优缺点与改进方案 1.BP神经网络的优缺点 2.改进方案 一、BP神经网络基…...

PCL 点云FPFH特征描述子

点云FPFH特征描述子 一、概述1.1 FPFH概念1.2 基本原理1.3 PFH和FPFH的区别二、代码实现三、结果示例一、概述 1.1 FPFH概念 快速点特征直方图(FPFH)描述子:计算 PFH 特征的效率其实是十分低的,这样的算法复杂度无法实现实时或接近实时的应用。因此,这篇文章将介绍 PFH 的简…...

基于golang的文章信息抓取

基于golang的文章信息抓取 学习golang爬虫&#xff0c;实现广度爬取&#xff0c;抓取特定的网页地址&#xff1a;测试站点新笔趣阁&#xff08;https://www.xsbiquge.com/&#xff09; 主要学习golang的goroutine和channel之间的协作&#xff0c;无限爬取站点小说的地址仅限书目…...

【手撕数据结构】卸甲时/空间复杂度

目录 前言时间复杂度概念⼤O的渐进表⽰法小试牛刀 空间复杂度 前言 要想知道什么是空/时间复杂度,就得知道什么是数据结构。 这得分两层来理解。我们生活中处处存在数据&#xff0c;什么抖音热点上的国际大事&#xff0c;什么懂的都懂的雍正卸甲等等一系列我们用户看得到的&a…...

消防认证-防火窗

一、消防认证 消防认证是指消防产品符合国家相关技术要求和标准&#xff0c;且通过了国家认证认可监督管理委员会审批&#xff0c;获得消防认证资质的认证机构颁发的证书&#xff0c;消防产品具有完好的防火功能&#xff0c;是住房和城乡建设领域验收的重要指标。 二、认证依据…...

C++进阶-二叉树进阶(二叉搜索树)

1. 二叉搜索树 1.1 二叉搜索树概念 二叉搜索树又称二叉排序树&#xff0c;它或者是一棵空树&#xff0c;或者是具有以下性质的二叉树: 1.若它的左子树不为空&#xff0c;则左子树上所有节点的值都小于根节点的值2.若它的右子树不为空&#xff0c;则右子树上所有节点的值都大于…...

【Unity小知识】UnityEngine.UI程序集丢失的问题

问题表现 先来说一下问题的表现&#xff0c;今天在开发的时候工程突然出现了报错&#xff0c;编辑器提示UnityEngine.UI缺少程序集引用。 问题分析与解决&#xff08;一&#xff09; 既然是程序集缺失&#xff0c;我们首先查看一下工程项目是否引用了程序集。在项目引用中查找一…...

CentOS 离线安装部署 MySQL 8详细教程

1、简介 MySQL是一个流行的开源关系型数据库管理系统&#xff08;RDBMS&#xff09;&#xff0c;它基于SQL&#xff08;Structured Query Language&#xff0c;结构化查询语言&#xff09;进行操作。MySQL最初由瑞典的MySQL AB公司开发&#xff0c;后来被Sun Microsystems公司…...

云计算【第一阶段(28)】DNS域名解析服务

一、DNS解析的定义与作用 1.1、DNS解析的定义 DNS解析&#xff08;Domain Name System Resolution&#xff09;是互联网服务中的一个核心环节&#xff0c;它负责将用户容易记住的域名转换成网络设备能够识别和使用的IP地址。一般来讲域名比 IP 地址更加的有含义、也更容易记住…...

pygame 音乐粒子特效

代码 import pygame import numpy as np import pymunk from pymunk import Vec2d import random import librosa import pydub# 初始化pygame pygame.init()# 创建屏幕 screen pygame.display.set_mode((1920*2-10, 1080*2-10)) clock pygame.time.Clock()# 加载音乐文件 a…...