当前位置: 首页 > news >正文

昇思MindSpore学习入门-CELL与参数一

Cell作为神经网络构造的基础单元,与神经网络层(Layer)的概念相对应,对Tensor计算操作的抽象封装,能够更准确清晰地对神经网络结构进行表示。除了基础的Tensor计算流程定义外,神经网络层还包含了参数管理、状态管理等功能。而参数(Parameter)是神经网络训练的核心,通常作为神经网络层的内部成员变量。本节我们将系统介绍参数、神经网络层以及其相关使用方法。

Parameter

参数(Parameter)是一类特殊的Tensor,是指在模型训练过程中可以对其值进行更新的变量。MindSpore提供mindspore.Parameter类进行Parameter的构造。为了对不同用途的Parameter进行区分,下面对两种不同类别的Parameter进行定义:

  • 可训练参数。在模型训练过程中根据反向传播算法求得梯度后进行更新的Tensor,此时需要将required_grad设置为True。
  • 不可训练参数。不参与反向传播,但需要更新值的Tensor(如BatchNorm中的mean和var变量),此时需要将requires_grad设置为False。

在Cell的__init__方法中,我们定义了w和b两个Parameter,并配置name进行命名空间管理。在construct方法中使用self.attr直接调用参与Tensor运算。

获取Parameter

在使用Cell+Parameter构造神经网络层后,我们可以使用多种方法来获取Cell管理的Parameter。

获取单个参数

单独获取某个特定参数,直接调用Python类的成员变量即可。

可使用Cell.trainable_params方法获取可训练参数,通常在配置优化器时需调用此接口。

使用Cell.get_parameters()方法可获取所有参数,此时会返回一个Python迭代器

或者可以调用Cell.parameters_and_names返回参数名称及参数。

修改Parameter

直接修改参数值

Parameter是一种特殊的Tensor,因此可以使用Tensor索引修改的方式对其值进行修改。

可调用Parameter.set_data方法,使用相同Shape的Tensor对Parameter进行覆盖。该方法常用于使用Initializer进行Cell遍历初始化。

运行时修改参数值

参数的主要作用为模型训练时对其值进行更新,在反向传播获得梯度后,或不可训练参数需要进行更新,都涉及到运行时参数修改。由于MindSpore的使用静态图加速编译设计,此时需要使用mindspore.ops.assign接口对参数进行赋值。该方法常用于自定义优化器场景。下面是一个简单的运行时修改参数值样例:

import mindspore as ms

@ms.jit

def modify_parameter():

    b_hat = ms.Tensor([7, 8, 9])

    ops.assign(net.b, b_hat)

    return True

modify_parameter()

print(net.b.asnumpy())

Parameter Tuple

变量元组ParameterTuple,用于保存多个Parameter,继承于元组tuple,提供克隆功能。

如下示例提供ParameterTuple创建方法:

相关文章:

昇思MindSpore学习入门-CELL与参数一

Cell作为神经网络构造的基础单元,与神经网络层(Layer)的概念相对应,对Tensor计算操作的抽象封装,能够更准确清晰地对神经网络结构进行表示。除了基础的Tensor计算流程定义外,神经网络层还包含了参数管理、状态管理等功能。而参数(…...

【k8s中安装rabbitmq】k8s中安装rabbitmq并搭建镜像集群-hostpath版

文章目录 简介一.条件及环境说明二.需求说明三.实现原理及说明四.详细步骤4.1.规划节点标签4.2.创建configmap配置4.3.创建三个statefulset和service headless配置4.4.创建service配置 五.安装完后的配置六.安装说明 简介 k8s集群中搭建rabbitmq集群服务一般都会用到pvc&#x…...

(5) 深入探索Python-Pandas库的核心数据结构:Series详解

目录 前言1. Series 简介2. Series的特点3. Series的创建3.1 使用列表创建Series3.2 使用字典创建Series3.3 使用列表和自定义索引创建Series3.4 指定数据类型和名称 4. Series的索引/切片4.1 下标索引:基于整数位置的索引4.2 基于标签的索引4.3 切片4.4 使用.loc[]…...

JAVA之开发神器——IntelliJ IDEA的下载与安装

一、IDEA是什么? IEAD是JetBrains公司开发的专用于java开发的一款集成开发环境。由于其功能强大且符合人体工程学(就是更懂你)的优点,深受java开发人员的喜爱。目前在java开发工具中占比3/4。如果你要走java开发方向,那…...

通过Umijs从0到1搭建一个React项目

有一阵时间没写react了,今天通过umi搭建一个demo项目复习一下react;umi是一个可扩展的企业级前端应用框架,在react市场中还是比较火的一个框架。 Umi官方文档:Umi 介绍 (umijs.org) 一、构建项目。 1、安装包管理工具。 官方推…...

Redis 数据过期及淘汰策略

Redis 数据过期及淘汰策略 过期策略 定时过期 在设置key​的过期时间的同时,为该key​创建一个定时器,让定时器在key​的过期时间来临时,对key进行删除。到过期时间就会立即清除。该策略可以立即清除过期的数据,对内存很友好&a…...

vue vite+three在线编辑模型导入导出

文章目录 序一、1.0.0版本1.新增2.编辑3.导出4.导入 总结 序 要实现一个类似于数字孪生的场景 可以在线、新增、删除模型 、以及编辑模型的颜色、长宽高 然后还要实现 编辑完后 保存为json数据 记录模型数据 既可以导入也可以导出 一、1.0.0版本 1.新增 先拿建议的立方体来…...

去水印小程序源码修复版-前端后端内置接口+第三方接口

去水印小程序源码,前端后端,内置接口第三方接口, 修复数据库账号密码错误问题,内置接口支持替换第三方接口, 文件挺全的,可以添加流量主代码,搭建需要准备一台服务器,备案域名和http…...

机器学习:预测评估8类指标

机器学习:8类预测评估指标 R方值、平均值绝对误差值MAE、均方误差MSE、均方误差根EMSE、中位数绝对误差MAD、平均绝对百分误差MAPE、可解释方差分EVS、均方根对数误差MLSE。 一、R方值 1、说明: R方值,也称为确定系数或拟合优度&#xff…...

【深度学习基础】MAC pycharm 专业版安装与激活

文章目录 一、pycharm专业版安装二、激活 一、pycharm专业版安装 PyCharm是一款专为Python开发者设计的集成开发环境(IDE),旨在帮助用户在使用Python语言开发时提高效率。以下是对PyCharm软件的详细介绍,包括其作用和主要功能&…...

排序相关算法--1.插入排序+冒泡排序回顾

1.基本分类 2.插入排序 特点:有实践意义(例如后期快排的优化),适应性强,一般不会到时间复杂度最坏的情况。 将第一个元素视为已经排好序的序列。取出下一个元素,在已经排好序的序列中从后往前比较&#xf…...

变阻器的故障排除方法有哪些?

变阻器,特别是滑动变阻器,作为电子电路中的常见元件,其故障排除方法主要依据具体的故障现象来确定。以下是一些常见的故障现象及其排除方法: 一、接触不良 现象:电阻器不起作用或电压不稳定。 排除方法: …...

软考《信息系统运行管理员》-3.1信息系统设施运维的管理体系

3.1信息系统设施运维的管理体系 1 信息系统设施运维的对象 基础环境 主要包括信息系统运行环境(机房、设备间、配线室、基站、云计算中心 等)中的空调系统、供配电系统、通信应急设备系统、防护设备系统(如消防系统、安全系统) 等,能维持系统安全正常运转&#xf…...

Nginx重定向

Nginx重定向 location 匹配 location匹配的就是后面的URL /WordPress 192.168.118.10/wordpress location匹配的分类和优先级 1.精确匹配 location/对字符串进行完全匹配,必须完全符合2.正则匹配 ^~ 前缀匹配,以什么为开头~ 区分大小写的匹配~* 不区分大小写!~: 区分大小…...

私有化地图离线部署方案之高程检索服务

私有化地图离线部署整体解决方案,除硬件之外,一般主要由基础地图服务、查询定位服务、路径规划服务和高程检索服务构成。 我们已经分享过基础地图服务、查询定位服务和路径规划服务,现在再为你分享高程检索服务的方法。 私有化高程检索服务…...

PostgreSQL 中如何实现数据的增量更新和全量更新的平衡?

文章目录 一、增量更新与全量更新的概念增量更新全量更新 二、考虑的因素1. 数据量2. 数据更改的频率和规模3. 数据一致性要求4. 系统性能和资源利用5. 业务逻辑和流程 三、解决方案(一)混合使用增量更新和全量更新(二)使用临时表…...

数据结构--二叉树相关习题5(判断二叉树是否是完全二叉树 )

1.判断二叉树是否是完全二叉树 辨别: 不能使用递归或者算节点个数和高度来判断。 满二叉树可以用高度和节点来判断,因为是完整的。 但是完全二叉树前面是满的,但是最后一层是从左到右连续这种 如果仍然用这种方法的话,如下图…...

Python 轻松生成多种条形码、二维码 (Code 128、EAN-13、QR code等)

条形码和二维码是现代信息交换和数据存储的重要工具,它们将信息以图形的形式编码,便于机器识别和数据处理,被广泛应用于物流、零售、医疗、教育等各领域。 本文将介绍如何使用Python快速生成各种常见的条形码如Code 128、EAN-13,…...

Python: 分块读取文本文件

在处理大文件时,逐行或分块读取文件是很常见的需求。下面是几种常见的方法,用于在 Python 中分块读取文本文件: 1、问题背景 如何分块读取一个较大的文本文件,并提取出特定的信息? 问题描述: fopen(blank.txt,r) quot…...

服务攻防——中间件Jboss

文章目录 一、Jboss简介二、Jboss渗透2.1 JBoss 5.x/6.x 反序列化漏洞(CVE-2017-12149)2.2 JBoss JMXInvokerServlet 反序列化漏洞(CVE-2015-7501)2.3 JBossMQ JMS 反序列化漏洞(CVE-2017-7504)2.4 Adminis…...

宏碁F5-572G-59K3笔记本笔记本电脑拆机清灰教程(详解)

1. 前言 我的笔记本开机比较慢,没有固态,听说最近固态比较便宜,就想入手一个,于是拆笔记本看一下有没有可以安的装位置。(友情提示,在拆机之前记得洗手并擦干,以防静电损坏电源器件&#xff09…...

基于FPGA的LDPC编译码算法设计基础知识

基于FPGA的LDPC编译码算法设计基础知识 数字电路(数电)知识模拟电路(模电)知识1. 放大器1.1. 晶体管放大器1.2. 运算放大器1.3. 管子放大器(真空管放大器)微处理器/单片机知识其他相关知识 基于FPGA的算法设…...

国际网课平台Udemy上的亚马逊云科技AWS免费高分课程和创建、维护EC2动手实践

亚马逊云科技(AWS)是全球云行业最🔥火的云平台,在全球经济形势不好的大背景下,通过网课学习亚马逊云科技AWS基础备考亚马逊云科技AWS证书,对于找工作或者无背景转行做AWS帮助巨大。欢迎大家关注小李哥,及时了解世界最前…...

空中交通新动能!2024深圳eVTOL展动力电池展区核心内容抢先看!

空中交通新动能!2024深圳eVTOL展动力电池展区核心内容抢先看! 关键词:2024深圳eVTOL展 动力电池 高能量密度电池 高性能电池材料 作为2024深圳eVTOL展重要组成部分,2024深圳eVTOL动力电池展将于9月23-25日在深圳坪山燕子湖国际会…...

代码江湖:Python 中的进程与线程

大家好,我是阔升。今天,咱们来聊聊 Python 中的两个"老熟人"——进程和线程。这两个概念可以说是 Python 多任务编程中的"双子星",既相似又不同,让不少小伙伴们头疼不已。不过别担心,今天我们就来…...

根据H在有限域GF(2^m)上求解生成矩阵G

原理 有时间再补充。 注1:使用高斯消去法。如果Py不为单位阵,则说明进行了列置换,此时G不是系统形式。 注2:校验矩阵H必须是行满秩才存在对应的生成矩阵G,且生成矩阵G通常不唯一。 matlab实现:只做列置…...

Django 实现子模版继承父模板

背景 Django的占位符,如果不继承父模板的内容,会被子模版所覆盖,有些业务场景子模版也需要使用到父模板中的内容 可以使用Django自带的标签{% block super %}来实现此效果 base.html 最基础html,相当于第一层html,bl…...

数据安全治理:从库级权限申请到表级权限申请

背景 随着数据安全意识的提高,企业越来越重视数据治理和权限管理。传统数仓大多对库级别进行读写授权,仅对人工标记的敏感库进行表级别授权,但由于敏感等级是由人为标记,错误率较高,故期望将权限申请流程细化到表级申…...

vue3源码(六)渲染原理-runtime-core

1.依赖关系 runtime-dom 依赖于runtime-core,runtime-core 依赖于reactivity和sharedruntime-core提供跨平台的渲染方法createRenderer,用户可以自己传递节点渲染的渲染方法renderOptions,本身不关心用户使用什么APIruntime-dom提供了为浏览器而生的渲染…...

python拆分Excel数据,自动发邮箱

import pandas as pd import poplib import email from email.header import decode_header from email.parser import Parser df = pd.read_excel("年假明细表.xlsx") depts = df["部门"].unique() for dept in depts: department_df = df[df[&q…...

描述网站建设的基本流程图/关键词分类

站内搜索,欢迎使用Loading转载于:https://www.cnblogs.com/jinho/archive/2010/04/07/1705867.html...

建设银行在上海的招聘网站/推广方式营销方案

20):题目:猴子吃桃问题:猴子第一天摘下若干个桃子,当即吃了一半,还不瘾,又多吃了一个第二天早上又将剩下的桃子吃掉一半,又多吃了一个。以后每天早上都吃了前一天剩下的一半零一个。…...

北京市住房和城乡建设委网站/他达拉非什么是

发工资咯: Time Limit: 2000/1000ms (Java/Others) Problem Description: 作为广财大的老师,最盼望的日子就是每月的8号了,因为这一天是发工资的日子,养家糊口就靠它了,呵呵 但是对于学校财务处的工作人员来说&#xf…...

做网站发广告/简述网络营销的特点及功能

在ASP.NET 中使用 Unity Application Block – 示例(提供代码下载) 下面的示例演示在ASP.NET Web Application 中使用 Unity 依赖注入容器。下载ASP.NetWeb Application源码!!! 具体步骤如下: 1. 创建IUnit…...

公司招聘一个网站建设来做推广/财经新闻最新消息

【2017cs231n】课程笔记01:计算机视觉概述及历史背景 搜索微信公众号:‘AI-ming3526’或者’计算机视觉这件小事’ 获取更多算法、机器学习干货 csdn:https://blog.csdn.net/baidu_31657889/ github:https://github.com/aimi-cn/AILearners 课…...

徐州小学网站建设/搜索引擎 磁力吧

说明: 本文以nvie的“a successful git branching model”为蓝本,结合我个人理解写成。如有谬误,还请各位指出。多谢! Note: This article is highly based on nvies a successful git branching model. Thanks nvie. Git Flow 是…...