机器学习:预测评估8类指标
机器学习:8类预测评估指标
R方值、平均值绝对误差值MAE、均方误差MSE、均方误差根EMSE、中位数绝对误差MAD、平均绝对百分误差MAPE、可解释方差分EVS、均方根对数误差MLSE。
一、R方值
1、说明:
R方值,也称为确定系数或拟合优度,是用于量化模型预测与真实数据之间拟合程度的指标。其值范围在0到1之间。
- R方值接近0:表示模型几乎没有解释数据中的变化,即模型的预测与真实值之间几乎没有关系。
- R方值接近1:表示模型解释了数据中的大部分变化,即模型的预测与真实值非常接近。
2、计算:
SST:是真实值与其均值之间差异的平方和,反映了数据中的总变化。
SSR:回归平方和,即回归模型可以解释的方差。它表示由自变量变化引起的因变量变化的部分,是可以用回归直线来解释的变差部分。
3、解读说明:
- R方值过高:
通常表示模型拟合得很好,能够解释数据中的大部分变化。但需要注意,高R方值并不一定意味着模型具有好的预测能力,特别是在存在过拟合的情况下。 - R方值过低:
可能表示模型拟合得不好,或者数据中的变化主要由随机噪声引起,而非模型能够解释的系统性规律。 - R方值的比较:
在比较不同模型的R方值时,需要注意数据的规模和特征。对于具有不同规模或特征的数据集,即使R方值相同,也可能表示模型具有不同的拟合能力。
二、平均绝对误差值MAE
1、说明:
预测值与实际值之差的绝对值的平均数,取值越小,模型准确度越高。
2、计算:
MAE=1𝑛∑𝑖=1𝑛|𝑦𝑖−𝑦^𝑖|
其中,n为样本个数,为真实值,为预测值。
3、解读说明:
- 直观易懂:
MAE是一个直观且易于理解的指标,因为它以与原始数据相同的单位来衡量误差。 - 对异常值不敏感:
由于MAE取的是绝对误差的平均值,因此它对数据中的异常值或极端值不敏感。这意味着即使数据中存在一些异常值,MAE值也不会受到太大的影响。 - 评估预测精度:
MAE直接反映了模型的预测精度,因为它衡量的是预测值与真实值之间的平均绝对差异。较小的MAE值表示模型具有更高的预测准确性。 - 不受数据集规模影响:
MAE是一个相对稳定的指标,它不受数据集规模的影响。因此,无论是在小数据集还是大数据集上,MAE都可以提供一致的评估结果。
三、均值误差MSE
1、说明:
预测值与实际值之差的平方的平均值。取值越小,模型准确度越高。
2、计算:
MSE=1𝑛∑𝑖=1𝑛(𝑦𝑖−𝑦^𝑖)2
其中,n为样本个数,为真实值,为预测值。
3、解读说明: - 敏感性:
MSE对预测误差的大小非常敏感,即使是较小的误差也会对MSE值产生较大的影响。因此,它能够有效反映模型的预测能力。
- 计算简单:
MSE的计算公式相对简单,易于理解和实现。
- 对离群值敏感:
MSE的一个主要缺点是它对数据中的离群值非常敏感。如果数据集中存在离群值,MSE的值可能会受到显著影响,导致对模型性能的评估不准确。
四、误差根RMSE
1、说明:
为 MSE 的平方根,取值越小,模型准确度越高。
2、计算:
RMSE=1𝑛∑𝑖=1𝑛(𝑦𝑖−𝑦^𝑖)2
其中,n为样本个数,为真实值,为预测值。
3、解释说明:
- 敏感性:
RMSE对预测误差的大小非常敏感,即使是较小的误差也会对RMSE值产生较大的影响。这有助于发现模型中的小偏差。
- 量纲一致性:
RMSE的单位与原始数据的单位相同,因此具有量纲一致性,便于理解和解释。
- 对离群值敏感:
由于RMSE计算中涉及到平方操作,因此它对数据中的离群值非常敏感。如果数据集中存在离群值,RMSE的值可能会受到显著影响。 - 数值范围:
RMSE的取值范围是0到正无穷大。数值越小,表示模型的预测精度越高
五、数绝对误差MAD
说明
有异常值也可以使用。
[1]李文颖.基于深度学习的金融市场波动率预测研究及应用[D].东华大学,2023.DOI:10.27012/d.cnki.gdhuu.2023.000710.
六、平均绝对百分误差MAPE
1、说明:
预测值与实际值之差的绝对值与实际值之比的平均数,以百分比表示。取值越小,模型准确度越高。
2、判断标准:
MAPE取值范围是0到正无穷大。
在这个范围内,MAPE值越小,表示预测模型越准确,预测值与实际值之间的误差越小。
MAPE值小于10%:通常认为这是一个比较好的预测模型,预测精度较高。
MAPE值在10%-20%之间:预测精度仍然可以接受,但可能需要进行一些优化以提高准确性。
MAPE值大于20%:这表示预测效果不太理想,可能需要重新评估模型或寻找更好的预测方法。
七、可解释方差得分EVS
1、说明:
可解释方差得分(EVS)是衡量回归模型预测结果与实际结果之间方差相似度的一个指标。它反映了模型捕捉到的数据变异性的程度,即模型预测值的变化与实际值变化之间的相似度。
2、计算:
EVS = 1 - (ESS / TSS)
ESS:回归平方和、TSS总体平方和。
3、判断标准:
可释方差得分的取值范围为[0,1],当EVS为1时,表示模型完美预测了数据;当EVS为0时,表示模型无法解释数据方差。
在实际应用中,EVS通常用于比较不同模型的表现,取值越接近1,表示模型解释的数据方差越多,表现越好。
八、均方根对数误差MSLE
1、说明和计算:
计算的是预测值与实际值之间的对数差的平方的平均值,再取平方根。
2、判断标准:
- 敏感性:
MSLE对于预测值与实际值之间的比例误差非常敏感。当预测值与实际值相差很大时,即使它们的绝对值差异可能不大,MSLE也会给出一个较大的值,从而惩罚模型。 - 对数据的分布敏感:
由于MSLE涉及到对数运算,因此它对数据的分布非常敏感。如果数据中存在大量的极端值或离群点,那么MSLE可能会给出不稳定的结果。
相关文章:

机器学习:预测评估8类指标
机器学习:8类预测评估指标 R方值、平均值绝对误差值MAE、均方误差MSE、均方误差根EMSE、中位数绝对误差MAD、平均绝对百分误差MAPE、可解释方差分EVS、均方根对数误差MLSE。 一、R方值 1、说明: R方值,也称为确定系数或拟合优度ÿ…...

【深度学习基础】MAC pycharm 专业版安装与激活
文章目录 一、pycharm专业版安装二、激活 一、pycharm专业版安装 PyCharm是一款专为Python开发者设计的集成开发环境(IDE),旨在帮助用户在使用Python语言开发时提高效率。以下是对PyCharm软件的详细介绍,包括其作用和主要功能&…...

排序相关算法--1.插入排序+冒泡排序回顾
1.基本分类 2.插入排序 特点:有实践意义(例如后期快排的优化),适应性强,一般不会到时间复杂度最坏的情况。 将第一个元素视为已经排好序的序列。取出下一个元素,在已经排好序的序列中从后往前比较…...

变阻器的故障排除方法有哪些?
变阻器,特别是滑动变阻器,作为电子电路中的常见元件,其故障排除方法主要依据具体的故障现象来确定。以下是一些常见的故障现象及其排除方法: 一、接触不良 现象:电阻器不起作用或电压不稳定。 排除方法: …...

软考《信息系统运行管理员》-3.1信息系统设施运维的管理体系
3.1信息系统设施运维的管理体系 1 信息系统设施运维的对象 基础环境 主要包括信息系统运行环境(机房、设备间、配线室、基站、云计算中心 等)中的空调系统、供配电系统、通信应急设备系统、防护设备系统(如消防系统、安全系统) 等,能维持系统安全正常运转…...

Nginx重定向
Nginx重定向 location 匹配 location匹配的就是后面的URL /WordPress 192.168.118.10/wordpress location匹配的分类和优先级 1.精确匹配 location/对字符串进行完全匹配,必须完全符合2.正则匹配 ^~ 前缀匹配,以什么为开头~ 区分大小写的匹配~* 不区分大小写!~: 区分大小…...

私有化地图离线部署方案之高程检索服务
私有化地图离线部署整体解决方案,除硬件之外,一般主要由基础地图服务、查询定位服务、路径规划服务和高程检索服务构成。 我们已经分享过基础地图服务、查询定位服务和路径规划服务,现在再为你分享高程检索服务的方法。 私有化高程检索服务…...

PostgreSQL 中如何实现数据的增量更新和全量更新的平衡?
文章目录 一、增量更新与全量更新的概念增量更新全量更新 二、考虑的因素1. 数据量2. 数据更改的频率和规模3. 数据一致性要求4. 系统性能和资源利用5. 业务逻辑和流程 三、解决方案(一)混合使用增量更新和全量更新(二)使用临时表…...

数据结构--二叉树相关习题5(判断二叉树是否是完全二叉树 )
1.判断二叉树是否是完全二叉树 辨别: 不能使用递归或者算节点个数和高度来判断。 满二叉树可以用高度和节点来判断,因为是完整的。 但是完全二叉树前面是满的,但是最后一层是从左到右连续这种 如果仍然用这种方法的话,如下图…...

Python 轻松生成多种条形码、二维码 (Code 128、EAN-13、QR code等)
条形码和二维码是现代信息交换和数据存储的重要工具,它们将信息以图形的形式编码,便于机器识别和数据处理,被广泛应用于物流、零售、医疗、教育等各领域。 本文将介绍如何使用Python快速生成各种常见的条形码如Code 128、EAN-13,…...

Python: 分块读取文本文件
在处理大文件时,逐行或分块读取文件是很常见的需求。下面是几种常见的方法,用于在 Python 中分块读取文本文件: 1、问题背景 如何分块读取一个较大的文本文件,并提取出特定的信息? 问题描述: fopen(blank.txt,r) quot…...

服务攻防——中间件Jboss
文章目录 一、Jboss简介二、Jboss渗透2.1 JBoss 5.x/6.x 反序列化漏洞(CVE-2017-12149)2.2 JBoss JMXInvokerServlet 反序列化漏洞(CVE-2015-7501)2.3 JBossMQ JMS 反序列化漏洞(CVE-2017-7504)2.4 Adminis…...

宏碁F5-572G-59K3笔记本笔记本电脑拆机清灰教程(详解)
1. 前言 我的笔记本开机比较慢,没有固态,听说最近固态比较便宜,就想入手一个,于是拆笔记本看一下有没有可以安的装位置。(友情提示,在拆机之前记得洗手并擦干,以防静电损坏电源器件)…...

基于FPGA的LDPC编译码算法设计基础知识
基于FPGA的LDPC编译码算法设计基础知识 数字电路(数电)知识模拟电路(模电)知识1. 放大器1.1. 晶体管放大器1.2. 运算放大器1.3. 管子放大器(真空管放大器)微处理器/单片机知识其他相关知识 基于FPGA的算法设…...

国际网课平台Udemy上的亚马逊云科技AWS免费高分课程和创建、维护EC2动手实践
亚马逊云科技(AWS)是全球云行业最🔥火的云平台,在全球经济形势不好的大背景下,通过网课学习亚马逊云科技AWS基础备考亚马逊云科技AWS证书,对于找工作或者无背景转行做AWS帮助巨大。欢迎大家关注小李哥,及时了解世界最前…...

空中交通新动能!2024深圳eVTOL展动力电池展区核心内容抢先看!
空中交通新动能!2024深圳eVTOL展动力电池展区核心内容抢先看! 关键词:2024深圳eVTOL展 动力电池 高能量密度电池 高性能电池材料 作为2024深圳eVTOL展重要组成部分,2024深圳eVTOL动力电池展将于9月23-25日在深圳坪山燕子湖国际会…...

代码江湖:Python 中的进程与线程
大家好,我是阔升。今天,咱们来聊聊 Python 中的两个"老熟人"——进程和线程。这两个概念可以说是 Python 多任务编程中的"双子星",既相似又不同,让不少小伙伴们头疼不已。不过别担心,今天我们就来…...

根据H在有限域GF(2^m)上求解生成矩阵G
原理 有时间再补充。 注1:使用高斯消去法。如果Py不为单位阵,则说明进行了列置换,此时G不是系统形式。 注2:校验矩阵H必须是行满秩才存在对应的生成矩阵G,且生成矩阵G通常不唯一。 matlab实现:只做列置…...

Django 实现子模版继承父模板
背景 Django的占位符,如果不继承父模板的内容,会被子模版所覆盖,有些业务场景子模版也需要使用到父模板中的内容 可以使用Django自带的标签{% block super %}来实现此效果 base.html 最基础html,相当于第一层html,bl…...

数据安全治理:从库级权限申请到表级权限申请
背景 随着数据安全意识的提高,企业越来越重视数据治理和权限管理。传统数仓大多对库级别进行读写授权,仅对人工标记的敏感库进行表级别授权,但由于敏感等级是由人为标记,错误率较高,故期望将权限申请流程细化到表级申…...

vue3源码(六)渲染原理-runtime-core
1.依赖关系 runtime-dom 依赖于runtime-core,runtime-core 依赖于reactivity和sharedruntime-core提供跨平台的渲染方法createRenderer,用户可以自己传递节点渲染的渲染方法renderOptions,本身不关心用户使用什么APIruntime-dom提供了为浏览器而生的渲染…...

python拆分Excel数据,自动发邮箱
import pandas as pd import poplib import email from email.header import decode_header from email.parser import Parser df = pd.read_excel("年假明细表.xlsx") depts = df["部门"].unique() for dept in depts: department_df = df[df[&q…...

2024年福州延安中学夏季拿云杯拔尖创新人才素养测试(小高组)
1、选择题 那么,mn的值是( ) A、1243 B、1343 C、4029 D、4049 2、填空题 一副扑克牌共54张,其中1到13点各有 4张,每个数字黑色红色各两张,还有两张王牌,至少要取出( )…...

ES6 之 Promise 构造函数知识点总结 (四)
Promise 是异步编程的一种解决方案,比传统的解决方案——回调函数和事件——更合理和更强大。它由社区最早提出和实现,ES6 将其写进了语言标准,统一了用法,原生提供了 Promise 对象。 Promise 对象有以下两个特点。 对象的状态不受…...

KIVY 3D Rotating Monkey Head¶
7 Python Kivy Projects (With Full Tutorials) – Pythonista Planet KIVY 3D Rotating Monkey Head kivy 3D 旋转猴子头How to display rotating monkey example in a given layout. Issue #6688 kivy/kivy GitHub 3d 模型下载链接 P99 - Download Free 3D model by …...

测试几个 ocr 对日语的识别情况
测试几个 ocr 对日语的识别情况 1. EasyOCR2. PaddleOCR3. Deepdoc(识别pdf中图片)4. Deepdoc(识别pdf中文字)5. Nvidia neva-22b6. Claude 3.5 sonnet 识别图片中的文字7. Claude 3.5 sonnet 识别 pdf 中表格8. OpenAI gpt-4o 识…...

华为机考前准备工作
很多同学在刷完真题后,就直接去考试了,会发现不是卡在了题目的难度上,而是卡在了代码数据的如何输入上。为了避免各位有志之士忽略小细节而导致的前功尽弃,博主特意总结了华为机考试题数据输入的几种情况及其源代码,仅…...

偏差、方差(训练误差,验证误差)
目录 一、偏差、方差:二、正则化参数λ对偏差、方差的影响:三、训练集规模对偏差、方差的影响:四、模型复杂度对偏差、方差的影响:五、方差、偏差如何帮助训练:1.高偏差解决方法:2.高方差解决方法ÿ…...

Retrofit框架源码深度剖析【Android热门框架分析第二弹】
Android热门框架解析,你确定不来看看吗? OkHttp框架源码深度剖析【Android热门框架分析第一弹】 Retrofit框架源码深度剖析【Android热门框架分析第二弹】 什么是Retrofit? 准确来说,Retrofit 是一个 RESTful 的 HTTP 网络请求…...

C++Windows环境搭建(CLion)
文章目录 CLion下载安装CLion下载CLion安装新建项目新建一个文件基础设置字体设置clion中单工程多main函数设置 参考 CLion下载安装 CLion下载 打开网址:https://www.jetbrains.com/clion/download/ 点击Download进行下载。 CLion安装 双击下载好的安装包&…...