适用于PyTorch 2.0.0的Ubuntu 22.04上CUDA v11.8和cuDNN 8.7安装指南
将下面内容保存为install.bash,直接用bash执行一把梭解决
#!/bin/bash### steps ####
# verify the system has a cuda-capable gpu
# download and install the nvidia cuda toolkit and cudnn
# setup environmental variables
# verify the installation
###### to verify your gpu is cuda enable check
lspci | grep -i nvidia### If you have previous installation remove it first.
sudo apt purge nvidia* -y
sudo apt remove nvidia-* -y
sudo rm /etc/apt/sources.list.d/cuda*
sudo apt autoremove -y && sudo apt autoclean -y
sudo rm -rf /usr/local/cuda*# system update
sudo apt update && sudo apt upgrade -y# install other import packages
sudo apt install g++ freeglut3-dev build-essential libx11-dev libxmu-dev libxi-dev libglu1-mesa libglu1-mesa-dev# first get the PPA repository driver
sudo add-apt-repository ppa:graphics-drivers/ppa
sudo apt update# find recommended driver versions for you
ubuntu-drivers devices# install nvidia driver with dependencies
sudo apt install libnvidia-common-515 libnvidia-gl-515 nvidia-driver-515 -y# reboot
sudo reboot now# verify that the following command works
nvidia-smisudo wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-ubuntu2204.pin
sudo mv cuda-ubuntu2204.pin /etc/apt/preferences.d/cuda-repository-pin-600
sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/3bf863cc.pub
sudo add-apt-repository "deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/ /"# Update and upgrade
sudo apt update && sudo apt upgrade -y# installing CUDA-11.8
sudo apt install cuda-11-8 -y# setup your paths
echo 'export PATH=/usr/local/cuda-11.8/bin:$PATH' >> ~/.bashrc
echo 'export LD_LIBRARY_PATH=/usr/local/cuda-11.8/lib64:$LD_LIBRARY_PATH' >> ~/.bashrc
source ~/.bashrc
sudo ldconfig# install cuDNN v11.8
# First register here: https://developer.nvidia.com/developer-program/signupCUDNN_TAR_FILE="cudnn-linux-x86_64-8.7.0.84_cuda11-archive.tar.xz"
sudo wget https://developer.download.nvidia.com/compute/redist/cudnn/v8.7.0/local_installers/11.8/cudnn-linux-x86_64-8.7.0.84_cuda11-archive.tar.xz
sudo tar -xvf ${CUDNN_TAR_FILE}
sudo mv cudnn-linux-x86_64-8.7.0.84_cuda11-archive cuda# copy the following files into the cuda toolkit directory.
sudo cp -P cuda/include/cudnn.h /usr/local/cuda-11.8/include
sudo cp -P cuda/lib/libcudnn* /usr/local/cuda-11.8/lib64/
sudo chmod a+r /usr/local/cuda-11.8/lib64/libcudnn*# Finally, to verify the installation, check
nvidia-smi
nvcc -V# install Pytorch (an open source machine learning framework)
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
转载并汉化自Github
相关文章:
适用于PyTorch 2.0.0的Ubuntu 22.04上CUDA v11.8和cuDNN 8.7安装指南
将下面内容保存为install.bash,直接用bash执行一把梭解决 #!/bin/bash### steps #### # verify the system has a cuda-capable gpu # download and install the nvidia cuda toolkit and cudnn # setup environmental variables # verify the installation ######…...
使用conda安装openturns
目录 1. 有效方法2. 整体分析使用pip安装使用conda安装验证安装安装过程中可能遇到的问题 1. 有效方法 conda install -c conda-forge openturns2. 整体分析 OpenTURNS是一个用于概率和统计分析的软件库,主要用于不确定性量化。你可以通过以下步骤在Python环境中安…...
Chameleon:动态UI框架使用详解
文章目录 引言Chameleon框架原理核心概念工作流程 基础使用安装与配置创建基础界面 高级使用自定义组件响应式布局数据流与状态管理 结论 引言 Chameleon,作为一种动态UI框架,旨在通过灵活、高效的方式帮助开发者构建跨平台、响应用户交互的图形用户界面…...
7.10飞书一面面经
问题描述 Redis为什么快? 这个问题我遇到过,但是没有好好总结,导致答得很乱。 答:Redis基于内存操作: 传统的磁盘文件操作相比减少了IO,提高了操作的速度。 Redis高效的数据结构:Redis专门设计…...
[数据结构] 归并排序快速排序 及非递归实现
()标题:[数据结构] 归并排序&&快速排序 及非递归实现 水墨不写bug (图片来源于网络) 目录 (一)快速排序 类比递归谋划非递归 快速排序的非递归实现: (二)归并排序 归…...
面试题 12. 矩阵中的路径
矩阵中的路径 题目描述示例 题解 题目描述 给定一个 m x n 二维字符网格 board 和一个字符串单词 word 。如果 word 存在于网格中,返回 true ;否则,返回 false 。 单词必须按照字母顺序,通过相邻的单元格内的字母构成࿰…...
钉钉扫码登录第三方
钉钉文档 实现登录第三方网站 - 钉钉开放平台 (dingtalk.com) html页面 将html放在 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><title>登录</title>// jquery<script src"http://code.jqu…...
多GPU系统中的CUDA设备不可用问题
我们在使用多GPU系统时遇到了CUDA设备不可用的问题,详细情况如下: 问题描述: 我们在一台配备有8块NVIDIA GeForce RTX 3090显卡的服务器上运行CUDA程序时,遇到了如下错误: cudaErrorDevicesUnavailable: CUDA-capabl…...
python的列表推导式
文章目录 前言一、解释列表推导式二、在这句代码中的应用三、示例四、使用 for 循环的等价代码总结 前言 看看这一行代码:questions [q.strip() for q in examples["question"]] ,问题是最外层的 中括号是做什么的? 最外层的中括…...
类与对象(2)
我们在了解了类的简单创建后,需要对类的创建与销毁有进一步的了解,也就是对于类的构造函数与析构函数的了解。 目录 注意: 构造函数的特性: 析构函数: 注意: 该部分内容为重难点内容,在正常…...
迂回战术:“另类“全新安装 macOS 15 Sequoia beta2 的极简方法
概述 随着 WWDC 24 的胜利闭幕,Apple 平台上各种 beta 版的系统也都“跃跃欲出”,在 mac 上自然也不例外。 本次全新的 macOS 15 Sequoia(红杉)包含了诸多重磅升级,作为秃头开发者的我们怎么能不先睹为快呢࿱…...
如何设计一个秒杀系统,(高并发高可用分布式集群)
设计一个高并发、高可用的分布式秒杀系统是一个非常具有挑战性的任务,需要从架构、数据库、缓存、并发控制、降级限流等多个维度进行考虑。以下是一个典型的秒杀系统设计思路: 1. 系统架构 微服务架构 拆分服务:将系统功能拆分为多个微服务…...
深度优先搜索(所有可达路径)
参考题目:所有可达路径 题目描述 给定一个有 n 个节点的有向无环图,节点编号从 1 到 n。请编写一个函数,找出并返回所有从节点 1 到节点 n 的路径。每条路径应以节点编号的列表形式表示。 输入描述 第一行包含两个整数 N,M&…...
如何配置yolov10环境?
本文介绍如何快速搭建起yolov10环境,用于后续项目推理、模型训练。教程适用win、linux系统 yolo10是基于yolo8(ultralytics)的改进,环境配置跟yolo8几乎一模一样。 目录 第1章节:创建虚拟环境 第2章节:…...
『大模型笔记』GraphRAG:利用复杂信息进行发现的新方法!
GraphRAG:利用复杂信息进行发现的新方法! 文章目录 一. GraphRAG:利用复杂信息进行发现的新方法!1. 将RAG应用于私人数据集2. 整个数据集的推理3. 创建LLM生成的知识图谱4. 结果指标5. 下一步二. 参考文献微软官方推文:https://www.microsoft.com/en-us/research/blog/gra…...
数据结构1:C++实现变长数组
数组作为线性表的一种,具有内存连续这一特点,可以通过下标访问元素,并且下标访问的时间复杂的是O(1),在数组的末尾插入和删除元素的时间复杂度同样是O(1),我们使用C实现一个简单的边长数组。 数据结构定义 class Arr…...
C++入门基础篇(下)
目录 6.引用 6.1 引用的特性 6.2 const引用 7.指针和引用的关系 8.内联函数 9.nullptr 6.引用 引⽤不是新定义⼀个变量,⽽是给已存在变量取了⼀个别名,编译器不会为引⽤变量开辟内存空间, 它和它引⽤的变量共⽤同⼀块内存空间。比如&a…...
LabVIEW图像分段线性映射
介绍了如何使用LabVIEW对图像进行分段线性映射处理,通过对特定灰度值区间进行不同的线性映射调整,以优化图像的显示效果。案例中详细展示了如何配置和使用LabVIEW中的图像处理工具,包括设置分段区间、计算映射参数和应用映射函数等步骤。 实…...
Linux开发:进程件通过UDS传递内存文件句柄
Linux开发:进程间通过Unix Domain Socket传递文件描述符-CSDN博客 介绍了通过UDS传递文件描述符 Linux开发:通过memfd_create创建一个内存文件-CSDN博客 介绍了如果创建一个内存文件 将两者相结合,就可以通过UDS传递一块内存文件句柄也就是内存数据 //uds_fd.hpp #pragma …...
Internet Download Manager6.42最新下载器互联网冲浪小能手们!
今天我要来种草一个超级棒的宝贝——Internet Download Manager(简称 IDM)。这个小家伙简直是下载界的“速度与激情”代言人,让我彻底告别了等待的日子。🎉 IDM马丁正版下载如下: https://wm.makeding.com/iclk/?zoneid34275 …...
【Java学习笔记】Arrays类
Arrays 类 1. 导入包:import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序(自然排序和定制排序)Arrays.binarySearch()通过二分搜索法进行查找(前提:数组是…...
【入坑系列】TiDB 强制索引在不同库下不生效问题
文章目录 背景SQL 优化情况线上SQL运行情况分析怀疑1:执行计划绑定问题?尝试:SHOW WARNINGS 查看警告探索 TiDB 的 USE_INDEX 写法Hint 不生效问题排查解决参考背景 项目中使用 TiDB 数据库,并对 SQL 进行优化了,添加了强制索引。 UAT 环境已经生效,但 PROD 环境强制索…...
DAY 47
三、通道注意力 3.1 通道注意力的定义 # 新增:通道注意力模块(SE模块) class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...
【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)
服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...
【第二十一章 SDIO接口(SDIO)】
第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...
Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务
通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...
数据链路层的主要功能是什么
数据链路层(OSI模型第2层)的核心功能是在相邻网络节点(如交换机、主机)间提供可靠的数据帧传输服务,主要职责包括: 🔑 核心功能详解: 帧封装与解封装 封装: 将网络层下发…...
python如何将word的doc另存为docx
将 DOCX 文件另存为 DOCX 格式(Python 实现) 在 Python 中,你可以使用 python-docx 库来操作 Word 文档。不过需要注意的是,.doc 是旧的 Word 格式,而 .docx 是新的基于 XML 的格式。python-docx 只能处理 .docx 格式…...
BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践
6月5日,2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席,并作《智能体在安全领域的应用实践》主题演讲,分享了在智能体在安全领域的突破性实践。他指出,百度通过将安全能力…...
前端开发面试题总结-JavaScript篇(一)
文章目录 JavaScript高频问答一、作用域与闭包1.什么是闭包(Closure)?闭包有什么应用场景和潜在问题?2.解释 JavaScript 的作用域链(Scope Chain) 二、原型与继承3.原型链是什么?如何实现继承&a…...
