当前位置: 首页 > news >正文

染色法判定二分图

什么是二分图?

二分图,也称作二部图,是图论中的一种特殊模型。在一个无向图G=(V,E) 中,如果顶点集合 V 可以被分割成两个互不相交的子集 A 和 B,并且图中的每条边 (i,j) 关联的两个顶点 i 和 j 分别属于这两个不同的顶点集(即 i 属于 A,j 属于 B),那么这样的图 G 就被称为二分图。二分图有一些特殊的性质和应用,例如,二分图中不存在奇数长度的环,并且它可以用在匹配问题、网络流问题等不同领域。
也就是说:二分图,就是可以使用两种不同的颜色对图中的顶点进行均匀染色的图,例如:存在两个区域A、B,A与B之间可以通过边进行连接,但是A与B内部是没有边的。
二分图,当且仅当图中不含奇数环。如果存在奇数环,那么就一定不是二分图。因为图中不含奇数环,所以染色过程中一定没有矛盾
图示:图中1和2表示不同的颜色,即二分图里一条边上的两个点的颜色是不尽相同的
             

 题目:860. 染色法判定二分图 - AcWing题库

 代码:

#include<iostream>
#include<cstring>
#include<algorithm>using namespace std;const int N=1e5+10,M=2*N;
int e[M],h[N],ne[M],idx;
int n,m,color[N];void add(int a,int b)
{e[idx]=b,ne[idx]=h[a],h[a]=idx++;
}bool dfs(int u,int c)
{color[u]=c;for(int i=h[u];i!=-1;i=ne[i]){int j=e[i];//r如果这一点没有被染色的话,那么就对其进行染色if(!color[j]){/*不难发现,对其进行染色的过程是在dfs中‘color[u]=c;’的这一步*///染色完毕后,如果染的颜色与上一个颜色相同,则else if语句会返回false//那么就不会形成二分图,返回false;if(!dfs(j,3-c)) return false;}//如果该颜色与上一个颜色相同,则二分图不成立else if(color[j]==c) return false;}return true;
}int main()
{cin >> n >> m;memset(h,-1,sizeof h);for(int i=0;i<m;i++){int a,b;cin >> a >> b;add(a,b),add(b,a);}bool flag=true;for(int i=1;i<=n;i++){//如果没有被染色的话if(!color[i]){
//那么就对其进行染色,如果dfs返回false,那么则二分图不成立if(!dfs(i,1)){//更改标志变量flag=false;//有一个不成立,则二分图整体就不成立,break掉即可break;}}}if(flag) puts("Yes");else puts("No");return 0;
}

相关文章:

染色法判定二分图

什么是二分图&#xff1f; 二分图&#xff0c;也称作二部图&#xff0c;是图论中的一种特殊模型。在一个无向图G(V,E) 中&#xff0c;如果顶点集合 V 可以被分割成两个互不相交的子集 A 和 B&#xff0c;并且图中的每条边 (i,j) 关联的两个顶点 i 和 j 分别属于这两个不同的顶…...

自动气象站的主要功能优势

在科技日新月异的今天&#xff0c;我们生活的方方面面都受到了科技的影响。其中&#xff0c;自动气象站作为气象观测领域的重要一环&#xff0c;不仅提升了气象数据的准确性和时效性&#xff0c;还为我们的日常生活、农业生产、灾害预防等提供了重要的数据支持。 自动气象站概述…...

Java中实现二维数组(矩阵)的转置

在矩阵运算中&#xff0c;矩阵的转置是一个基本操作&#xff0c;即将矩阵的行变成列&#xff0c;列变成行。在Java中&#xff0c;我们可以通过编写一个方法来实现二维数组的转置。下面&#xff0c;我将详细介绍如何在Java中完成这一任务&#xff0c;并提供完整的代码示例。 编…...

Prometheus+Grafana主机运行数据

目录 介绍 安装Node Exporter 配置Prometheus 验证配置 导入仪表盘 介绍 Prometheus是一款开源的监控和警报工具&#xff0c;而Node Exporter是Prometheus的一个官方插件&#xff0c;用于采集主机上的各种系统和硬件指标。 安装Node Exporter 下载最新版本的Node Export…...

GraphQL在Postman中:释放API查询的强大潜能

&#x1f680; GraphQL在Postman中&#xff1a;释放API查询的强大潜能 Postman作为API开发和测试的领先工具&#xff0c;对GraphQL的支持为开发者提供了一种新的方式来查询和管理数据。GraphQL是一种查询语言&#xff0c;用于API&#xff0c;允许客户端明确指定他们需要哪些数…...

大语言模型里的微调vs RAG vs 模板提示词

文章目录 介绍微调&#xff08;Fine-tuning&#xff09;定义优点&#xff1a;缺点&#xff1a;应用场景&#xff1a;技术细节 检索增强生成&#xff08;RAG&#xff0c;Retrieval-Augmented Generation&#xff09;定义优点&#xff1a;缺点&#xff1a;应用场景&#xff1a;技…...

网络编程:常用网络测试工具

telnet netstat ping arp wireshark&#xff08;网络抓包工具&#xff09; tcpdumpssh2 secure crt ——软件工具sudo ufw disable sudo apt-get install openssh-server openssh-client //两个命令敲完 得重启sudo apt-get install wireshark 1、telnet 远程登录工具&…...

mov视频怎么改成mp4?把mov改成MP4的四个方法

mov视频怎么改成mp4&#xff1f;选择合适的视频格式对于确保内容质量和流通性至关重要。尽管苹果公司的mov格式因其出色的视频表现备受赞誉&#xff0c;但在某些情况下&#xff0c;它并非最佳选择&#xff0c;因为使用mov格式可能面临一些挑战。MP4格式在各种设备&#xff08;如…...

力扣1472.设计浏览器历史记录

力扣1472.设计浏览器历史记录 用双指针记录历史记录 以及栈顶高度移动时会直接把之前的记录消掉 class BrowserHistory {int pos-1;int top0;string history[5010];public:BrowserHistory(string homepage) {visit(homepage);}void visit(string url) {pos ;top pos;histor…...

准大一新生开学千万要带证件照用途大揭秘

1、提前关注好都有哪些考场&#xff0c;以及这些考场大致在网页的哪个位置。比如我选对外经贸大学&#xff0c;我就直接找到第二个点进去。 2、电脑上同时开了谷歌浏览器和IE浏览器&#xff0c;以及手机也登陆了。亲测下来&#xff0c;同一时间刷新&#xff0c;谷歌浏览器能显示…...

QImage显示图片像素

在Qt中&#xff0c;QImage 类是用来表示和处理图像的。如果你想查看或显示一个图片的像素数据&#xff0c;你可以使用 QImage 提供的方法来访问这些数据。以下是一些基本的方法来获取和显示图片的像素信息&#xff1a; 获取图像的像素格式&#xff1a; 使用 QImage::format() …...

uniapp使用高德地图(公众号+h5)

选择微信小程序的话后果就是你的地图出不来&#xff0c;出来了就报key异常 下面直接放配置和代码&#xff1a; 打包后的高德uni-app,uniCloud,serverless,高德地图,申请高德地图Key,配置使用高德地图,参数说明,高德开放平台用户名,百度地图,申请百度地图Key,配置使用百度地图,…...

深度学习与浅层学习:技术变革下的竞争态势

深度学习与浅层学习&#xff1a;技术变革下的竞争态势 在过去十年中&#xff0c;深度学习的崛起对整个人工智能领域产生了巨大影响&#xff0c;几乎在各种任务中显示出超越传统浅层学习方法的性能。这种变化不仅推动了技术的进步&#xff0c;还对硬件市场&#xff0c;尤其是显…...

LeetCode 219. 存在重复元素 II

LeetCode 219. 存在重复元素 II 给你一个整数数组 nums 和一个整数 k &#xff0c;判断数组中是否存在两个 不同的索引 i 和 j &#xff0c;满足 nums[i] nums[j] 且 abs(i - j) < k 。如果存在&#xff0c;返回 true &#xff1b;否则&#xff0c;返回 false 。 示例 1&am…...

【目标检测】使用自己的数据集训练并预测yolov8模型

1、下载yolov8的官方代码 地址&#xff1a; GitHub - ultralytics/ultralytics: NEW - YOLOv8 &#x1f680; in PyTorch > ONNX > OpenVINO > CoreML > TFLite 2、下载目标检测的训练权重 yolov8n.pt 将 yolov8n.pt 放在ultralytics文件夹下 3、数据集分布 注…...

应用监控SkyWalking调研

参考&#xff1a; 链路追踪( Skyworking )_skywalking-CSDN博客 企业级监控项目Skywalking详细介绍&#xff0c;来看看呀-CSDN博客 SkyWalking 极简入门 | Apache SkyWalking 使用 SkyWalking 监控 ClickHouse Server | Apache SkyWalking https://zhuanlan.zhihu.com/p/3…...

Selenium使用注意事项:

find_element 和 find_elements 的区别 WebDriver和WebElement的区别 问题&#xff1a; 会遇到报错&#xff1a; selenium.common.exceptions.NoSuchElementException: Message: no such element: Unable to locate element: {"method":"css selector",&…...

小程序需要进行软件测试吗?小程序测试有哪些测试内容?

在如今移动互联网快速发展的时代&#xff0c;小程序已成为人们生活中不可或缺的一部分。然而&#xff0c;面对日益增长的小程序数量和用户需求&#xff0c;小程序的稳定性和质量问题日益突显。因此&#xff0c;对小程序进行软件测试显得尤为重要。 近期的一项调查显示&#xf…...

一文读懂企业租用GPU的注意事项!

在人工智能、大数据处理及高性能计算领域&#xff0c;GPU算力已成为推动技术创新与业务增长的核心动力。尚云Sunclouds作为GPU算力租赁服务提供商&#xff0c;为用户提供了灵活、高效且成本可控的解决方案。对于初次接触GPU算力租赁的用户而言&#xff0c;了解并掌握租用过程中…...

Linux运维:mysql主从复制原理及实验

当一台数据库服务器出现负载的情况下&#xff0c;需要扩展服务器服务器性能扩展方式有向上扩展&#xff0c;垂直扩展。向外扩展&#xff0c;横向扩展。通俗的讲垂直扩展是将一台服务器扩展为性能更强的服务器。横向扩展是增加几台服务器。 主从复制好比存了1000块钱在主上&…...

Python实现prophet 理论及参数优化

文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候&#xff0c;写过一篇简单实现&#xff0c;后期随着对该模型的深入研究&#xff0c;本次记录涉及到prophet 的公式以及参数调优&#xff0c;从公式可以更直观…...

MODBUS TCP转CANopen 技术赋能高效协同作业

在现代工业自动化领域&#xff0c;MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步&#xff0c;这两种通讯协议也正在被逐步融合&#xff0c;形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...

Reasoning over Uncertain Text by Generative Large Language Models

https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...

C++:多态机制详解

目录 一. 多态的概念 1.静态多态&#xff08;编译时多态&#xff09; 二.动态多态的定义及实现 1.多态的构成条件 2.虚函数 3.虚函数的重写/覆盖 4.虚函数重写的一些其他问题 1&#xff09;.协变 2&#xff09;.析构函数的重写 5.override 和 final关键字 1&#…...

GitFlow 工作模式(详解)

今天再学项目的过程中遇到使用gitflow模式管理代码&#xff0c;因此进行学习并且发布关于gitflow的一些思考 Git与GitFlow模式 我们在写代码的时候通常会进行网上保存&#xff0c;无论是github还是gittee&#xff0c;都是一种基于git去保存代码的形式&#xff0c;这样保存代码…...

在鸿蒙HarmonyOS 5中使用DevEco Studio实现指南针功能

指南针功能是许多位置服务应用的基础功能之一。下面我将详细介绍如何在HarmonyOS 5中使用DevEco Studio实现指南针功能。 1. 开发环境准备 确保已安装DevEco Studio 3.1或更高版本确保项目使用的是HarmonyOS 5.0 SDK在项目的module.json5中配置必要的权限 2. 权限配置 在mo…...

路由基础-路由表

本篇将会向读者介绍路由的基本概念。 前言 在一个典型的数据通信网络中&#xff0c;往往存在多个不同的IP网段&#xff0c;数据在不同的IP网段之间交互是需要借助三层设备的&#xff0c;这些设备具备路由能力&#xff0c;能够实现数据的跨网段转发。 路由是数据通信网络中最基…...

C++中vector类型的介绍和使用

文章目录 一、vector 类型的简介1.1 基本介绍1.2 常见用法示例1.3 常见成员函数简表 二、vector 数据的插入2.1 push_back() —— 在尾部插入一个元素2.2 emplace_back() —— 在尾部“就地”构造对象2.3 insert() —— 在任意位置插入一个或多个元素2.4 emplace() —— 在任意…...

记一次spark在docker本地启动报错

1&#xff0c;背景 在docker中部署spark服务和调用spark服务的微服务&#xff0c;微服务之间通过fegin调用 2&#xff0c;问题&#xff0c;docker容器中服务器来后&#xff0c;注册中心都有&#xff0c;调用服务也正常&#xff0c;但是调用spark启动任务后报错&#xff0c;报错…...

mq安装新版-3.13.7的安装

一、下载包&#xff0c;上传到服务器 https://github.com/rabbitmq/rabbitmq-server/releases/download/v3.13.7/rabbitmq-server-generic-unix-3.13.7.tar.xz 二、 erlang直接安装 rpm -ivh erlang-26.2.4-1.el8.x86_64.rpm不需要配置环境变量&#xff0c;直接就安装了。 erl…...