如何指定多块GPU卡进行训练-数据并行
训练代码:
train.py
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
import torch.nn.functional as F# 假设我们有一个简单的文本数据集
class TextDataset(Dataset):def __init__(self, texts, labels, vocab):self.texts = textsself.labels = labelsself.vocab = vocabdef __len__(self):return len(self.texts)def __getitem__(self, idx):text = self.texts[idx]label = self.labels[idx]# 将文本转换为索引text_indices = [self.vocab.get(word, self.vocab['<UNK>']) for word in text.split()]return torch.tensor(text_indices, dtype=torch.long), torch.tensor(label, dtype=torch.long)# 定义一个简单的LSTM分类器
class LSTMClassifier(nn.Module):def __init__(self, vocab_size, embedding_dim, hidden_dim, output_dim):super(LSTMClassifier, self).__init__()self.embedding = nn.Embedding(vocab_size, embedding_dim)self.lstm = nn.LSTM(embedding_dim, hidden_dim, batch_first=True)self.fc = nn.Linear(hidden_dim, output_dim)def forward(self, x):embedded = self.embedding(x)_, (hidden, _) = self.lstm(embedded)output = self.fc(hidden[-1])return output# 构建词汇表
vocab = {'<PAD>': 0, '<UNK>': 1, 'I': 2, 'love': 3, 'this': 4, 'movie': 5, 'is': 6, 'terrible': 7}
vocab_size = len(vocab)# 示例数据
texts = ["I love this movie", "This movie is terrible"]
labels = [1, 0] # 1表示正面情感,0表示负面情感# 创建数据集和数据加载器
dataset = TextDataset(texts, labels, vocab)
dataloader = DataLoader(dataset, batch_size=2, shuffle=True, collate_fn=lambda x: (torch.nn.utils.rnn.pad_sequence([item[0] for item in x], batch_first=True), torch.stack([item[1] for item in x])))# 实例化模型
embedding_dim = 50
hidden_dim = 50
output_dim = 2
model = LSTMClassifier(vocab_size, embedding_dim, hidden_dim, output_dim)# 使用DataParallel包装模型
model = nn.DataParallel(model)# 将模型移动到GPU
model = model.cuda()# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)# 训练步骤
model.train()
for epoch in range(10): # 训练10个epochfor inputs, labels in dataloader:inputs, labels = inputs.cuda(), labels.cuda()optimizer.zero_grad()outputs = model(inputs)loss = criterion(outputs, labels)loss.backward()optimizer.step()print(f"Epoch {epoch+1}, Loss: {loss.item()}")print("训练完成")# 测试模型
model.eval()
test_texts = ["I love this movie", "This movie is terrible"]
test_dataset = TextDataset(test_texts, [1, 0], vocab)
test_dataloader = DataLoader(test_dataset, batch_size=2, shuffle=False, collate_fn=lambda x: (torch.nn.utils.rnn.pad_sequence([item[0] for item in x], batch_first=True), torch.stack([item[1] for item in x])))with torch.no_grad():for inputs, labels in test_dataloader:inputs, labels = inputs.cuda(), labels.cuda()outputs = model(inputs)predictions = torch.argmax(F.softmax(outputs, dim=1), dim=1)print(f"Predictions: {predictions.cpu().numpy()}, Labels: {labels.cpu().numpy()}")
执行命令:
- export CUDA_VISIBLE_DEVICES=0,2
- python train.py
GPU监控
训练前
训练中
Epoch 1, Loss: 0.7198400497436523
Epoch 2, Loss: 0.6889444589614868
Epoch 3, Loss: 0.6591541767120361
Epoch 4, Loss: 0.630306601524353
Epoch 5, Loss: 0.6022476553916931
Epoch 6, Loss: 0.5748419761657715
Epoch 7, Loss: 0.5479871034622192
Epoch 8, Loss: 0.5216072201728821
Epoch 9, Loss: 0.4956483840942383
Epoch 10, Loss: 0.47007784247398376
训练完成
Predictions: [1 0], Labels: [1 0]
结论
export CUDA_VISIBLE_DEVICES=0,2与nn.DataParallel(model)结合的方法是正确的
为什么需要指定 CUDA_VISIBLE_DEVICES
- 在多GPU系统中,默认情况下,PyTorch 会尝试使用所有可用的GPU进行训练。
- 通过设置 CUDA_VISIBLE_DEVICES 环境变量,用于控制哪些GPU对当前进程可见,PyTorch 只会使用这些可见的GPU进行训练。
- 通过设置环境变量,你可以在不修改代码的情况下控制使用的GPU。这使得代码更加简洁和通用,不需要在代码中硬编码GPU的选择逻辑。
总的来说:通过设置 CUDA_VISIBLE_DEVICES 环境变量,你可以灵活地控制哪些GPU对当前进程可见,从而避免资源冲突、简化代码并更好地管理多GPU资源。这是使用 torch.nn.DataParallel 进行多GPU训练时的一种常见做法。
nn.DataParallel原理是什么
nn.DataParallel 是 PyTorch 中用于多 GPU 并行计算的一个模块。它的主要原理是将输入数据分割成多个子集,并将这些子集分配到不同的 GPU 上进行并行计算。具体来说,nn.DataParallel 的工作流程如下:
- 模型复制:首先,nn.DataParallel 会将模型复制到每个 GPU 上。这意味着每个 GPU 都会有一份完整的模型副本。
- 数据分割:输入数据会被分割成多个子集,每个子集会被分配到一个 GPU 上。通常,这个分割是按批次(batch)维度进行的。
- 并行计算:每个 GPU 使用其本地的模型副本对分配到的子集进行前向传播和后向传播计算。
- 梯度汇总:在所有 GPU 上完成计算后,nn.DataParallel 会将每个 GPU 计算得到的梯度汇总到主 GPU 上(通常是 GPU 0)。
- 参数更新:主 GPU 汇总梯度后,使用这些梯度更新模型参数。更新后的参数会同步到所有 GPU 上的模型副本。
相关文章:
如何指定多块GPU卡进行训练-数据并行
训练代码: train.py import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader, Dataset import torch.nn.functional as F# 假设我们有一个简单的文本数据集 class TextDataset(Dataset):def __init__(self, te…...
RK3568笔记三十三: helloworld 驱动测试
若该文为原创文章,转载请注明原文出处。 报着学习态度,接下来学习驱动是如何使用的,从简单的helloworld驱动学习起。 开始编写第一个驱动程序—helloworld 驱动。 一、环境 1、开发板:正点原子的ATK-DLRK3568 2、系统…...
【智能制造-14】机器视觉软件
CCD相机和COMS相机? CCD(Charge-Coupled Device)相机和CMOS(Complementary Metal-Oxide-Semiconductor)相机是两种常见的数字图像传感器技术,用于捕捉和处理图像。 CCD相机: CCD相机使用一种称为CCD的光电…...
MVC分页
public ActionResult Index(int ? page){IPagedList<EF.ACCOUNT> userPagedList;using (EF.eMISENT content new EF.eMISENT()){第几页int pageNumber page ?? 1;每页数据条数,这个可以放在配置文件中int pageSize 10;//var infoslist.C660List.OrderBy(…...
webGL可用的14种3D文件格式,但要具体问题具体分析。
hello,我威斯数据,你在网上看到的各种炫酷的3d交互效果,背后都必须有三维文件支撑,就好比你网页的时候,得有设计稿源文件一样。WebGL是一种基于OpenGL ES 2.0标准的3D图形库,可以在网页上实现硬件加速的3D图…...
HybridCLR原理中的重点总结
序言 该文章以一个新手的身份,讲一下自己学习的经过,大家更快的学习HrbirdCLR。 我之前的两个Unity项目中,都使用到了热更新功能,而热更新的技术栈都是用的HybridCLR。 第一个项目本身虽然已经集成好了热更逻辑(使用…...
昇思学习打卡-14-ResNet50迁移学习
文章目录 数据集可视化预训练模型的使用部分实现 推理 迁移学习:在一个很大的数据集上训练得到一个预训练模型,然后使用该模型来初始化网络的权重参数或作为固定特征提取器应用于特定的任务中。本章学习使用的是前面学过的ResNet50,使用迁移学…...
软件开发面试题C#,.NET知识点(续)
1.C#中的封装是什么,以及它的重要性。 封装(Encapsulation) 是面向对象编程(OOP)的一个基本概念。它指的是将对象的状态(属性)和行为(方法)绑定在一起,并且将…...
2019年美赛题目Problem A: Game of Ecology
本题分析: 本题想要要求从实际生物角度出发,对权力游戏中龙这种虚拟生物的生态环境和生物特性进行建模,感觉属于比较开放类型的题目,重点在于参考生物的选择,龙虽然是虚拟的但是龙的生态特性可以参考目前生物圈里存在…...
沙龙回顾|MongoDB如何充当企业开发加速器?
数据不仅是企业发展转型的驱动力,也是开发者最棘手的问题。前日,MongoDB携手阿里云、NineData在杭州成功举办了“数据驱动,敏捷前行——MongoDB企业开发加速器”技术沙龙。此次活动吸引了来自各行各业的专业人员,共同探讨MongoDB的…...
云端编码:将您的技术API文档安全存储在iCloud的最佳实践
云端编码:将您的技术API文档安全存储在iCloud的最佳实践 作为一名技术专业人士,管理不断增长的API文档库是一项挑战。iCloud提供了一个无缝的解决方案,允许您在所有设备上存储、同步和访问您的个人技术API文档。本文将指导您如何在iCloud中高…...
在Spring Boot项目中集成单点登录解决方案
在Spring Boot项目中集成单点登录解决方案 大家好,我是微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿! 在现代的企业应用中,单点登录(Single Sign-On, SSO)解决方案是确保用户…...
Java-常用API
1-Java API : 指的就是 JDK 中提供的各种功能的 Java类。 2-Scanner基本使用 Scanner: 一个简单的文本扫描程序,可以获取基本类型数据和字符串数据 构造方法: Scanner(InputStream source):创建 Scanner 对象 Sy…...
Python从Excel表中查找指定数据填入新表
#读取xls文件中的数据 import xlrd file "原表.xls" wb xlrd.open_workbook(file) #读取工作簿 ws wb.sheets()[0] #选第一个工作表 data [] for row in range(7, ws.nrows): name ws.cell(row, 1).value.strip() #科室名称 total1 ws.cell(row, 2…...
从零开始实现大语言模型(三):Token Embedding与位置编码
1. 前言 Embedding是深度学习领域一种常用的类别特征数值化方法。在自然语言处理领域,Embedding用于将对自然语言文本做tokenization后得到的tokens映射成实数域上的向量。 本文介绍Embedding的基本原理,将训练大语言模型文本数据对应的tokens转换成Em…...
视频怎么压缩变小?最佳视频压缩器
即使在云存储和廉价硬盘空间时代,大视频文件使用起来仍然不方便。无论是存储、发送到电子邮件帐户还是刻录到 DVD,拥有最好的免费压缩软件可以确保您快速缩小文件大小,而不必担心视频质量下降。继续阅读以探索一些顶级最佳 免费视频压缩器选项…...
LLM - 绝对与相对位置编码 与 RoPE 旋转位置编码 源码
欢迎关注我的CSDN:https://spike.blog.csdn.net/ 本文地址:https://spike.blog.csdn.net/article/details/140281680 免责声明:本文来源于个人知识与公开资料,仅用于学术交流,欢迎讨论,不支持转载。 Transformer 是基于 MHSA (多头自注意力),然而,MHSA 对于位置是不敏感…...
B3917 [语言月赛 202401] 小跳蛙
OK 挠~ stop here~ 好啊,现在呢,把手头的事情先放一放啊,我们来做道练习 OK? 好啊来: 小跳蛙 题目描述 有 𝑛−1 只小跳蛙在池塘中,依次被编号为 1,2,⋯ ,𝑛−1。池塘里有 &am…...
Bash ——shell
Bash作为用户与操作系统之间的接口,让用户通过命令行输入各种指令来控制和操作计算机系统。 shell的两种解释: 1.linux命令解释器 Terminal 终端 ——》shell命令 ——》 Linux kernel (内核) Linux内核的作用: 1.…...
PyTorch复现PointNet——模型训练+可视化测试显示
因为项目涉及到3D点云项目,故学习下PointNet这个用来处理点云的神经网络 论文的话,大致都看了下,网络结构有了一定的了解,本博文主要为了下载调试PointNet网络源码,训练和测试调通而已。 我是在Anaconda下创建一个新的…...
分享五款软件,成为高效生活的好助手
给大家分享一些优秀的软件工具,是一件让人很愉悦的事情,今天继续带来5款优质软件。 1.图片放大——Bigjpg Bigjpg是一款图片放大软件,采用先进的AI算法,能够在不损失图片质量的前提下,将低分辨率图片放大至所需尺寸。无论…...
代码随想录算法训练营DAY58|101.孤岛的总面积、102.沉没孤岛、103. 水流问题、104.建造最大岛屿
忙。。。写了好久。。。。慢慢补吧。 101.孤岛的总面积 先把周边的岛屿变成水dfs def dfs(x, y, graph, s):if x<0 or x>len(graph) or y<0 or y>len(graph[0]) or graph[x][y]0:return sgraph[x][y]0s1s dfs(x1, y, graph, s)s dfs(x-1, y, graph, s)s dfs(…...
韦尔股份:深蹲起跳?
利润大增7倍,是反转信号还是回光返照? 今天我们聊聊光学半导体龙头——韦尔股份。 上周末,韦尔股份发布半年业绩预告,预计上半年净利润13至14亿,同比增幅高达 754%至 819%。 然而,回首 2023 年它的净利仅 …...
docs | 使用 sphinx 转化rst文件为html文档
1. 效果图 book 风格。 优点: 极简风格右边有标题导航左侧是文件导航,可隐藏 2. 使用方式 reST 格式,比markdown格式更复杂。 推荐使用 book 风格。 文档构建工具是 sphinx,是一个python包。 $ pip3 list | grep -i Sphinx …...
【ChatGPT 消费者偏好】第二弹:ChatGPT在日常生活中的使用—推文分享—2024-07-10
今天的推文主题还是【ChatGPT & 消费者偏好】 第一篇:哪些动机因素和技术特征的组合能够导致ChatGPT用户中高和低的持续使用意图。第二篇:用户对ChatGPT的互动性、性能期望、努力期望以及社会影响如何影响他们继续使用这些大型语言模型的意向&#x…...
Webpack配置及工作流程
Webpack是一个现代JavaScript应用程序的静态模块打包器(module bundler)。当Webpack处理应用程序时,它会在内部构建一个依赖图(dependency graph),该图会映射项目所需的每个模块,并生成一个或多…...
华为ensp实现防火墙的区域管理与用户认证
实验环境 基于该总公司内网,实现图片所在要求 后文配置请以本图为准 接口配置与网卡配置 1、创建vlan 2、防火墙g0/0/0与云页面登录 登录admin,密码Admin123,自行更改新密码 更改g0/0/0口ip,敲下命令service-manage all permit 网卡配置…...
深入解析 Laravel 策略路由:提高应用安全性与灵活性的利器
引言 Laravel 是一个功能强大的 PHP Web 应用框架,以其优雅和简洁的语法而受到开发者的喜爱。在 Laravel 中,路由是应用中非常重要的一部分,它负责将用户的请求映射到相应的控制器方法上。Laravel 提供了多种路由方式,其中策略路…...
Java | Leetcode Java题解之第228题汇总区间
题目: 题解: class Solution {public List<String> summaryRanges(int[] nums) {List<String> ans new ArrayList<>();for (int i 0, j, n nums.length; i < n; i j 1) {j i;while (j 1 < n && nums[j 1] num…...
使用Simulink基于模型设计(三):建模并验证系统
可以对系统结构中的每个组件进行建模,以表示该组件的物理行为或功能行为。通过使用测试数据对组件进行仿真,以验证它们的基本行为。 打开系统布局 对各个组件进行建模时,需要从大局上把握整个系统布局。首先加载布局模型。这里以simulink自…...
wordpress将首页转成html代码/成功的网络营销案例及分析
一、为什么要使用数据库主从架构一个网站损耗资源最厉害的就是数据库,最易崩溃的也是数据库,而数据库崩溃带来的后果是非常严重的。数据库分为读和写操作,在实际的应用中,读操作的损耗远比写操作多太多,因此读操作是引…...
wordpress 新建页面 所有文章/优化推广什么意思
题目描述 【问题描述】 Gardon 昨天给小希布置了一道作业,即根据一张由不超过 5000 的 N(3<N<100)个正整数组成的数表两两相加得到 N*(N-1)/2 个和,然后再将它们排序。例如,如果数表里含有四个数 1,3,4&#x…...
网络管理系统的基本组件包括哪些?/佛山seo联系方式
主要内容: 信号的稀疏表示模型压缩测量RIP性质 恢复重建一、信号的稀疏表示模型 信号在某个空间是非稀疏的,如果变换到某个空间,即可变成稀疏的。 稀疏信号表示有极少的非零系数。 如下图,左边表示X信号在R3空间中只有一个非0系数…...
txt怎么做pdf电子书下载网站/泉州seo培训
Linux从源码编译安装大体就是配置,编译,安装三步,下面看看OpenCV的编译安装过程。 安装依赖环境 本地编译软件并不能自动下载依赖环境,因此需要手动安装,执行以下命令即可 sudo apt-get update sudo apt-get install…...
少数民族文字政府网站建设/人民日报最新头条10条
题意:给定一些奶牛,每个牛有s和f两个属性值,有正有负,要求选出一些牛,使得这些牛的两种属性的和的加和最大,且这些牛的两种属性分别求加和不能为负。 分析:dp,开始想到dp[i][s][f]&a…...
做电影网站模板教学设计/网络营销师证书查询
说来惭愧,虽然在软件行业混迹了将近八个年头,“软考”这个词对我来说,依然是一个新词,只是在最近半年之内才听说它。说到这,顺便感谢下我在神州巨龙参加PMP培训时的同学们,正是通过他们的介绍和谈论&#x…...