今日进出沈阳最新通知/学seo需要学什么专业
简明调节大模型的prompt的方法【简洁明了带案例】
- 1. 明确任务目标
- 2. 提供上下文
- 3. 指定格式
- 4. 限制输出长度
- 5. 使用示例
- 6. 逐步引导
- 7. 提供反面例子
- 8. 使用CoT思维链
- 9. 反复试验和调整
- 方法九解释:乔哈里窗检视
- 最后
因为网上给出的调节prompt都 过于详细,这里挑选出了一些 常用但足够用的调节大模型prompt的方法。方便大家看完后 简洁明了快速掌握调节prompt的技巧。
以下是一些技巧和例子,帮助你更好地调prompt:
1. 明确任务目标
确保你的提示词明确地表达了你希望模型完成的任务。
(明确的任务指令、任务类型(如生成文本、回答问题、分类等)以及期望的输出格式)
例子:
- 不明确的提示词:
“讲个故事。”
- 明确的提示词:
“请讲一个关于勇敢的小狗拯救森林的故事,故事中要有三个主要角色和一个令人惊讶的结局。”
2. 提供上下文
为模型提供必要的背景信息,以便它能够生成更相关的内容。
例子:
- 无背景信息:
“给我写一篇关于人工智能的文章。”
- 有背景信息:
“请写一篇关于人工智能在医疗领域应用的文章,重点介绍其在诊断和治疗中的作用。”
3. 指定格式
如果你需要特定格式的输出,明确说明。
(在prompt中详细列出对输出的要求,包括内容要求、格式要求、风格要求等。)
例子:
- 不指定格式:
“写一篇关于气候变化的报告。”
- 指定格式:
“写一篇关于气候变化的报告,包含以下部分:引言、现状分析、影响、解决方案和结论。”
4. 限制输出长度
限制输出的长度可以帮助模型集中在最重要的信息上。
例子:
- 无长度限制:
“解释一下量子计算。”
- 有长度限制:
“用不超过150字解释量子计算。”
5. 使用示例
提供示例和模板可以帮助模型理解你期望的输出类型和风格。
(适用于需要特定格式或风格的任务。)
例子:
- 无示例:
“写一个关于友谊的故事。”
- 有示例:
“写一个关于友谊的故事。例如:‘小明和小红是从小一起长大的好朋友,他们一起经历了许多冒险……’”
6. 逐步引导
对于复杂任务,可以将其分解为多个步骤,并逐步引导模型完成每个步骤。
(将复杂任务,将其分解成多个简单的子任务,并逐一解决)
例子:
- 复杂任务:
“写一个关于人工智能的详细报告。”
- 分步骤引导:
“请先写一段引言,介绍人工智能的基本概念。”
“接下来,写一段关于人工智能在图像识别中的应用。”
“然后,写一段关于人工智能在自然语言处理中的应用。”
“最后,写一段总结,讨论人工智能的未来发展趋势。”
7. 提供反面例子
告诉模型哪些是你不希望看到的内容,可以帮助它更好地理解你的需求。
例子:
- 不提供反面例子:
“写一篇关于可持续发展的文章。”
- 提供反面例子:
“写一篇关于可持续发展的文章,不要包含太多技术术语,避免使用过于专业的语言。”
8. 使用CoT思维链
技巧说明:CoT(Chain-of-Thought)思维链提示常用于推理规划类问题。通过要求模型先输出中间过程,再逐步运算生成答案,可以提高模型对复杂问题的推理准确性。
例子:
- COT例子:“在解决这个数学问题时,请首先列出你的解题思路,然后逐步计算并给出答案。例如,对于问题‘10+5=?’,你的解题思路应该是先计算个位上的和,再计算十位上的和,最终得到答案15。’”
9. 反复试验和调整
通过反复试验和调整来调节prompt。根据模型的输出不断优化你的提示词。
例子:
- 初始提示词:
“写一个关于未来科技的故事。”
- 调整后的提示词:
“写一个关于未来科技的故事,故事发生在2050年,主角是一名年轻的科学家,她发明了一种能够治愈所有疾病的纳米机器人。”
方法九解释:乔哈里窗检视
方法九实际上就是乔哈里窗检视的应用:通过识别开放区、隐藏区、盲区和未知区,我们可以调整prompt以减少误解。)
例子:
- 应用乔哈里视窗:“在编写prompt时,我明确提出了需求(开放区),但模型可能没有完全理解我希望它生成的内容类型(隐藏区)。通过反复调整和测试,我逐渐缩小了隐藏区,使模型更准确地理解了我的意图。”
最后
我们只要把大模型当成一个人,通过调节和它对话的内容,就总能让它输出我们比较期望的prompt。
相关文章:

【简洁明了】调节大模型的prompt的方法【带案例】
简明调节大模型的prompt的方法【简洁明了带案例】 1. 明确任务目标2. 提供上下文3. 指定格式4. 限制输出长度5. 使用示例6. 逐步引导7. 提供反面例子8. 使用CoT思维链9. 反复试验和调整方法九解释:乔哈里窗检视 最后 因为网上给出的调节prompt都 过于详细ÿ…...

【操作系统】文件管理——文件存储空间管理(个人笔记)
学习日期:2024.7.17 内容摘要:文件存储空间管理、文件的基本操作 在上一章中,我们学习了文件物理结构的管理,重点学习了操作系统是如何实现逻辑结构到物理结构的映射,这显然是针对已经存储了文件的磁盘块的࿰…...

微软GraphRAG +本地模型+Gradio 简单测试笔记
安装 pip install graphragmkdir -p ./ragtest/input#将文档拷贝至 ./ragtest/input/ 下python -m graphrag.index --init --root ./ragtest修改settings.yaml encoding_model: cl100k_base skip_workflows: [] llm:api_key: ${GRAPHRAG_API_KEY}type: openai_chat # or azu…...

数学建模-Topsis(优劣解距离法)
介绍 TOPSIS法(Technique for Order Preference by Similarity to Ideal Solution) 可翻译为逼近理想解排序法,国内常简称为优劣解距离法 TOPSIS 法是一种常用的综合评价方法,其能充分利用原始数据的信息, 其结果能精…...

嵌入式linux相机 转换模块
convert_manager.c #include <config.h> #include <convert_manager.h> #include <string.h>static PT_VideoConvert g_ptVideoConvertHead NULL;/*********************************************************************** 函数名称: Register…...

【自学安全防御】二、防火墙NAT智能选路综合实验
任务要求: (衔接上一个实验所以从第七点开始,但与上一个实验关系不大) 7,办公区设备可以通过电信链路和移动链路上网(多对多的NAT,并且需要保留一个公网IP不能用来转换) 8,分公司设备可以通过总…...

【Android】传给后端的Url地址被转码问题处理
一、问题 为什么使用Gson().toJson的时候,字符串中的会被转成\u003d 在 Gson 中,默认情况下会对某些特殊字符进行 HTML 转义,以确保生成的 JSON 字符串在 HTML 中是安全的。因此,字符 会被转义为 \u003d。你可以通过禁用 HTML 转…...

1.厦门面试
1.Vue的生命周期阶段 vue生命周期分为四个阶段 第一阶段(创建阶段):beforeCreate,created 第二阶段(挂载阶段):beforeMount(render),mounted 第三阶段&#…...

设计模式使用场景实现示例及优缺点(行为型模式——状态模式)
在一个遥远的国度中,有一个被称为“变幻之城”的神奇城堡。这座城堡有一种特殊的魔法,能够随着王国的需求改变自己的形态和功能。这种神奇的变化是由一个古老的机制控制的,那就是传说中的“状态宝石”。 在变幻之城中,有四颗宝石&…...

抖音短视频seo矩阵系统源码(搭建技术开发分享)
#抖音矩阵系统源码开发 #短视频矩阵系统源码开发 #短视频seo源码开发 一、 抖音短视频seo矩阵系统源码开发,需要掌握以下技术: 网络编程:能够使用Python、Java或其他编程语言进行网络编程,比如使用爬虫技术从抖音平台获取数据。…...

基于 asp.net家庭财务管理系统设计与实现
博主介绍:专注于Java .net php phython 小程序 等诸多技术领域和毕业项目实战、企业信息化系统建设,从业十五余年开发设计教学工作 ☆☆☆ 精彩专栏推荐订阅☆☆☆☆☆不然下次找不到哟 我的博客空间发布了1000毕设题目 方便大家学习使用感兴趣的可以先…...

allure_pytest:AttributeError: ‘str‘ object has no attribute ‘iter_parents‘
踩坑记录 问题描述: 接口自动化测试时出现报错,报错文件是allure_pytest库 问题分析: 自动化测试框架是比较成熟的代码,报错也不是自己写的文件,而是第三方库,首先推测是allure_pytest和某些库有版本不兼…...

C语言 反转链表
题目链接:https://leetcode.cn/problems/reverse-linked-list/description/?envTypestudy-plan-v2&envIdselected-coding-interview 完整代码: /*** Definition for singly-linked list.* struct ListNode {* int val;* struct ListNode *next;* };*/// 反转链表…...

MFC CRectTracker 类用法详解
CRectTracker 类并非 Microsoft Foundation Class (MFC) 库中应用很广泛的一个类,一般教科书中很少有提到。在编程中如果需编写选择框绘制以及选择框大小调整、移动等程序时,用CRectTracker 类就会做到事半而功倍。下面详细介绍MFC CRectTracker 类。 M…...

好玩的调度技术-场景编辑器
好玩的调度技术-场景编辑器 文章目录 好玩的调度技术-场景编辑器前言一、演示一、代码总结好玩系列 前言 这两天写前端写上瘾了,顺手做了个好玩的东西,好玩系列也好久没更新,正好作为素材写一篇文章,我真的觉得蛮好玩的ÿ…...

提高自动化测试脚本编写效率 5大关键注意事项
提高自动化测试脚本编写效率能加速测试周期,减少人工错误,提升软件质量,促进项目按时交付,增强团队生产力和项目成功率。而自动化测试脚本编写效率低下,往往会导致测试周期延长,增加项目成本,延…...

护眼落地灯哪个更护眼?2024年度最值得入手的5款护眼大路灯推荐
落地灯和台灯哪个更护眼?之所以我们眼睛经常酸痛,很大部分的原因是因为我们长时间在不良光线下,将注意力集中在屏幕或书本上会导致眼睛肌肉过度使用,引发疲劳和酸痛。但也不排除不正确的坐姿或者工作环境缺乏适当的照明引起的&…...

DP讨论——适配器、桥接、代理、装饰器模式通用理解
学而时习之,温故而知新。 共性 适配器、桥接、代理和装饰器模式,实现上基本没啥区别,怎么区分?只能从上下文理解,看目的是啥。 它们,我左看上看下看右看,发现理解可以这么简单:都是A类调用B/…...

Apache AGE的MATCH子句
MATCH子句允许您在数据库中指定查询将搜索的模式。这是检索数据以在查询中使用的主要方法。 通常在MATCH子句之后会跟随一个WHERE子句,以添加用户定义的限制条件到匹配的模式中,以操纵返回的数据集。谓词是模式描述的一部分,不应被视为仅在匹…...

Netty Websocket
一、WebSocket 协议概述 WebSocket 是一种在单个 TCP 连接上进行全双工通信的协议。它允许服务端主动向客户端推送数据,从而实现了实时通信。WebSocket 建立在 HTTP 之上,但与 HTTP 的轮询(Polling)和长轮询(Long Pol…...

用户注册业务逻辑、接口设计和实现、前端逻辑
一、用户注册业务逻辑分析 二、用户注册接口设计和定义 2.1. 设计接口基本思路 对于接口的设计,我们要根据具体的业务逻辑,设计出适合业务逻辑的接口。设计接口的思路: 分析要实现的业务逻辑: 明确在这个业务中涉及到几个相关子…...

ubuntu搭建harbor私仓
1、环境准备 链接: https://pan.baidu.com/s/1q4XBWPd8WdyEn4l253mpUw 提取码: 7ekx --来自百度网盘超级会员v2的分享 准备一台Ubuntu 机器:192.168.124.165 将上面两个文件考入Ubuntu上面 2、安装harbor 安装Docker Harbor仓库以容器方式运行,需要先安装好docker,参考:…...

深层神经网络示例
维度说明: A[L]、Z[L]:(本层神经元个数、样本数) W[L]:(本层神经元个数、上层神经元个数) b[L]:(本层神经元个数、1) dZ[L]:dA[L] * g’A…...

vue中获取剪切板中的内容
目录 1.说明 2.示例 3.总结 1.说明 在系统中的画面或者时外部文件中进行拷贝处理后,在页面中可以获取剪切板的内容。 2.示例 方式①(直接获取) // 异步函数获取剪切板内容 async function getClipboardContent(ev: any) {try {ev.preventDefault()const clip…...

十五、【机器学习】【监督学习】- 神经网络回归
系列文章目录 第一章 【机器学习】初识机器学习 第二章 【机器学习】【监督学习】- 逻辑回归算法 (Logistic Regression) 第三章 【机器学习】【监督学习】- 支持向量机 (SVM) 第四章【机器学习】【监督学习】- K-近邻算法 (K-NN) 第五章【机器学习】【监督学习】- 决策树…...

知识图谱和 LLM:利用Neo4j驾驭大型语言模型(探索真实用例)
这是关于 Neo4j 的 NaLLM 项目的一篇博客文章。这个项目是为了探索、开发和展示这些 LLM 与 Neo4j 结合的实际用途。 2023 年,ChatGPT 等大型语言模型 (LLM) 因其理解和生成类似人类的文本的能力而风靡全球。它们能够适应不同的对话环境、回答各种主题的问题,甚至模拟创意写…...

目标检测入门:4.目标检测中的一阶段模型和两阶段模型
在前面几章里,都只做了目标检测中的目标定位任务,并未做目标分类任务。目标检测作为计算机视觉领域的核心人物之一,旨在从图像中识别出所有感兴趣的目标,并确定它们的类别和位置。现在目标检测以一阶段模型和两阶段模型为代表的。…...

zookeeper+kafka消息队列群集部署
kafka拓扑架构 zookeeper拓扑架构...

[K8S]一、Flink on K8S
Kubernetes | Apache Flink 先编辑好这5个配置文件,然后再直接执行 kubectl create -f ./ kubectl get all kubectl get nodes kubectl get pods kubectl get pod -o wide kubectl get cm -- 获取所有的configmap 配置文件 kubectl logs pod_name -- 查看…...

系统架构设计师教程 第3章 信息系统基础知识-3.1 信息系统概述
系统架构设计师教程 第3章 信息系统基础知识-3.1 信息系统概述 3.1.1 信息系统的定义3.1.1.1 信息系统3.1.1.2 信息化3.1.2 信息系统的发展3.1.2.1 初始阶段3.1.2.2 传播阶段3.1.2.3 控制阶段3.1.2.4 集成阶段3.1.2.5 数据管理阶段3.1.2.6 成熟阶段3.1.3 信息系统的分类3.…...