当前位置: 首页 > news >正文

dede s网站地图调文章/产品线上推广方案

dede s网站地图调文章,产品线上推广方案,昆明建设局官方网站,新开的公司怎么做网站文章目录 UDP协议UDP协议的特点UDP的应用以及杂项 TCP协议TCP协议段格式解释和TCP过程详解确认应答机制 -- 序号和确认序号以及6位标志位中的ACK超时重传机制连接管理机制 与标志位SYN,FIN,ACK滑动窗口与16位窗口大小流量控制拥塞控制延迟应答捎带应答和面向字节流粘包问题TCP异…

文章目录

    • UDP协议
      • UDP协议的特点
      • UDP的应用以及杂项
    • TCP协议
      • TCP协议段格式解释和TCP过程详解
        • 确认应答机制 -- 序号和确认序号以及6位标志位中的ACK
        • 超时重传机制
        • 连接管理机制 与标志位SYN,FIN,ACK
        • 滑动窗口与16位窗口大小
        • 流量控制
        • 拥塞控制
        • 延迟应答
        • 捎带应答和面向字节流
        • 粘包问题
        • TCP异常情况
        • TCP特点
    • TCP对比UDP

UDP协议

udp协议报头数据表格

16位源端口号16位目的端口号16位UDP长度16位UDP校验和数据
2字节2字节2字节2字节最大2^16 - 1字节的数据

UDP协议的特点

  • 无连接
  • 不可靠
  • 面向数据报

UDP的应用以及杂项

  • DNS域名解析
  • DHCP动态主机配置协议
  • TFTP简单文件传输协议
  • SNMP简单网络管理协议
  • UDP没有类似TCP那样的缓冲区,其在实现时将应用层数据拷贝到内核层后就直接发送了。

TCP协议

TCP报头表格

16位源端口号16位目的端口号32位序列号32位确认号4位首部长度6位标志位16位窗口大小16位校验和16位紧急指针数据
2字节2字节4字节4字节4位6位2字节2字节2字节最大2^16 - 1字节的数据

请添加图片描述

TCP协议段格式解释和TCP过程详解

确认应答机制 – 序号和确认序号以及6位标志位中的ACK

序列号: TCP对其数据帧中每一个字节的数据都做了一个编号,发送方用这些序号标记哪些数据发送出去。
确认序号: 接收方响应给发送方时,用确认序号告诉发送方,接收方寂静收到了确认序号之前的那些数据,这个确认序号就告诉发送方,下一个数据应该从哪个序号开始发送。
ACK: 确认序号标志位,当ACK=1时,确认序号有效,当ACK=0时,确认序号无效。
值得注意的是,确认应答要保证前面的数据发过去了,也就是收到了ACK,才会继续发下一次的数据。
请添加图片描述
问,为什么不只用一个序号就够了吗?为何还需要确认序号呢?
答:因为TCP的链接实际不分客户端服务端,建立了链接之后就是双向平等的,别忘了,上面Server短发回去的也是一个完整的TCP报文,那这个报文的是不是也有自己的数据呢,那么这份数据也是需要序号的,否则单独拿一个TCP报文来应答不是很低效吗。

超时重传机制

在这里插入图片描述
网络发送中,丢包显然是常见的事,那么对UDP而言,其不可靠性决定了丢包了UDP是不管的。而TCP保证可靠性,所以如果对于主机A发送的数据没有收到应答,那么A不会直接发送后续的数据,而是等着应答,但是不可能一直等待吧,万一B主机根本没有收到呢?所以就需要超时重传。这一个不受到之前发送数据的应答,就不发送之后的数据,这一特点既有好处又有坏处。

问:超时重传的时间应该如何确定?

  • 最理想的情况下, 找到一个最小的时间, 保证 “确认应答一定能在这个时间内返回”.
  • 但是这个时间的长短, 随着网络环境的不同, 是有差异的.
  • 如果超时时间设的太长, 会影响整体的重传效率;
  • 如果超时时间设的太短, 有可能会频繁发送重复的包
  • Linux中(BSD Unix和Windows也是如此), 超时以500ms为一个单位进行控制, 每次判定超时重发的超时时间都是500ms的整数倍.
  • 如果重发一次之后, 仍然得不到应答, 等待 2*500ms 后再进行重传.
  • 如果仍然得不到应答, 等待 4*500ms 进行重传. 依次类推, 以指数形式递增.
  • 累计到一定的重传次数, TCP认为网络或者对端主机出现异常, 强制关闭连接.
连接管理机制 与标志位SYN,FIN,ACK

建立连接:TCP三次握手

在这里插入图片描述
过程描述:
首先主机A向主机B发送连接请求SYN(同时携带有数据,所以自然也有序号seq,序号的事不再提及)此时主机B收到,这是第一次握手;
后向主机B发送响应ACK,同时也发送SYN请求A主机连接。当A主机收到,B的信息,这是第二次握手,此时A主机就认为连接已经建立好。
A主机建立好连接,并且发出响应给B主机,此时B主机收到ACK后,开始建立与A主机的连接。这是第三次握手。
许多教材或者网上甚至是AI都有对三次连接的生动形象的描述,此篇不多提及,来看看几个问题来帮助理解三次握手。

问:为什么建立连接需要三次握手,一次,两次,或者四次吗?
答:一次握手不行,为什么?因为如果一次连接就可以,那么势必导致服务器端也就是上述的主机B在接受连接时,处于一种容易被平白无故消耗资源的地位,只要由单个连接来,就建立,这显然效率十分低下,再者倘若如此,和UDP的无连接差距并不明显。
两次握手不行吗?不行,原因也很简单,一样的是对服务器端不公平,只要A主机发来请求,B主机就要建立连接,那么这容易造成资源浪费。你可能会说在第二次握手时客户端A就建立了连接,那不是对客户端不公平?但是时客户端发起的连接请求,所以客户端先建立连接是合理的。
那么四次呢?答案是可以的,但是没有必要,实际上理解三次握手就可以看作四次握手来理解。分别是A->B 的SYN,B->A 的ACK, B->A的 SYN ,A->B的ACK。那为什么是三次呢?原因是B给A的ACK和SYN一次就发送了。所以就是我们看到的三次握手了。

问:为什么要有这种握手SYN_ACK机制?
答:因为网络之中,无论怎么发送,AB主机通信,总是不能保证最新的那条消息对方收到了没。就如同QQ发消息一样(有些邮件类会显示对方已读,也就是对方未显示已读),对方没给你会消息,你就永远不知道对方看见你的上一条消息没,序号正好用来解决这个问题。同时这也是为什么建立连接时需要三次握手,我总要保证对方在线吧。

断开连接:TCP四次挥手
理解了上面的三次握手骂我们来看四次挥手:

在这里插入图片描述
过程描述:
主机A想主机B发送FIN的信号,告诉主机B要断开连接,B收到A的FIN信号,第一次次挥手;
这个时候主机B并没有类似与之前的三次握手那样就直接发送ACK和FIN信号,而是先回应客户端ACK信号之后,然后让A主机收到,这是第二次挥手;
接着过了CLOSE_WAIT过后呢,这个时候主机B再向主机A发送FIN信号,告诉主机B断开连接。这是第三次挥手;
接着主机A发送给主机B响应之后,主机B收到就断开连接。但是主机A需要等待TIME_WAIT时间(一般是2*MSL)

一样来解答几个关键问题。
问:如果你理解了我提出的三次握手,那么为什么是四次挥手也无需多言,思考以下为什么会呈现为四次挥手?因为CLOSE_WAIT需要等待一段时间。
为什么需要CLOSE_WAIT和TIME_WAIT这这两个等待时间呢?为什么不能直接和建立连接那样呢?
答:
TIME_WAIT的存在意义,1.TCP里面,规定TIME_WAIT是2个MSL(maximum segment lifetime),这个MSL指的是TCP报文最大生存时间,只要等待2MSL,2.就能保证传输或者发送的报文都在网络中消散干净,3.等待这么久,同时也使得对被动关闭方主机的ACK是否收到,如果没收到被动方也就是主机B可以再发一个FIN这样即使主机A的进程没了,但是连接还在久依旧能处理。试想以下如果没有这个,那么当服务器主动关闭后,就有可能再次收到之前进程的报文(而该报文大概率是错误的)。这里还值得一说的是,TCP的序号每次开始三次握手时会确定一个随机起始序号,也能一定程度上防止这种问题。
CLSOE_WAIT是用来干什么的呢?一般是表示有些数据呢,被动端还没有处理完毕,这个时候就会进行CLOSE_WAIT,一般来说CLOSE_WAIT状态时很短暂的。如果出现CLOSE_WAIT,大概率时没有正确关闭套接字,比如Svr没有去调用close久退出了进程。

滑动窗口与16位窗口大小

TCP常常说滑动窗口,那么什么是滑动窗口呢?用程序员比较熟悉的话说,就是在一段连续的数组空间就是滑动窗口,这个数据单个大小元素就是字节,而所谓的滑动窗口就是这段数组的部分区间。
在这里插入图片描述
在这里插入图片描述
由上述印象之后,我们来看几个问题。

为什么要搞滑动窗口?
因为TCP是确认应答机制,发一个字节需要确认之后再发送,不会显得效率很低吗?尤其是网络状况差时。TCP是要兼顾一定效率的。
通过发送滑动窗口区间的数据,就不需要确认应答,直接发送就行。收到最后部分数据,如上图的第9的那一部分发送后,接着发送下一部分。如果说中间有发送失败的,重发即可。

上述问题之后,我们考虑滑动窗口大小如何确定?滑动窗口发过去的数据如何确定顺序呢?如果确定发完了呢?
如何确定大小?三次握手的时候,彼此不都又SYN和ACK吗,这就是用 16位窗口大小 来确定彼此的滑动窗口的大小。如何确定顺序和这个窗口是否发完?毫无疑问就是序号,通过需要了确定这部分数据的顺序即可,这样就在接受缓冲区确定了数据顺序。最后一份数据的ACK就可以表示。

如过丢包了呢?数据包丢了如何,ACK响应丢了又如何?
如果是ACK丢包了,不影响,因为最后一份确认序号的ACK能表示之前的都收到了。如果是数据包呢?那么发送丢失的数据包的序列号请求即可,比如上述图的5号丢失,那么接收方只需要发送5的序号请求即可。

流量控制

对于TCP,我们知道是全双工的,同时也有一个滑动窗口,那么如果发送方嘎嘎发,导致接收方缓冲区满了怎么办?这种时候就需要流量控制。

  • 接收端将自己可以接收的缓冲区大小放入 TCP 首部中的 “窗口大小” 字段, 通过ACK端通知发送端;
  • 窗口大小字段越大, 说明网络的吞吐量越高;
  • 接收端一旦发现自己的缓冲区快满了, 就会将窗口大小设置成一个更小的值通知给发送端;
  • 发送端接受到这个窗口之后, 就会减慢自己的发送速度;
  • 如果接收端缓冲区满了, 就会将窗口置为0; 这时发送方不再发送数据, 但是需要定期发送一个窗口探测数据段, 使接收端把窗口大小告诉发送端.

接收端如何把窗口大小告诉发送端呢? 回忆我们的TCP首部中, 有一个16位窗口字段, 就是存放了窗口大小信息;
那么问题来了, 16位数字最大表示65535, 那么TCP窗口最大就是65535字节么?
实际上, TCP首部40字节选项中还包含了一个窗口扩大因子M, 实际窗口大小是 窗口字段的值左移 M 位

拥塞控制

虽然有了滑动窗口,但是依然不足以应对复杂的网络环境。倘若网上有大量主机在使用网络,而你又在嘎嘎发数据,网络情况不是变得更差?
因此就有了慢启动,快增长,快速重传
TCP引入 慢启动 机制, 先发少量的数据, 探探路, 摸清当前的网络拥堵状态, 再决定按照多大的速度传输数据
此处引入一个概念程为拥塞窗口
发送开始的时候, 定义拥塞窗口大小为1;
每次收到一个ACK应答, 拥塞窗口加1;
每次发送数据包的时候, 将拥塞窗口和接收端主机反馈的窗口大小做比较, 取较小的值作为实际发送的窗

在这里插入图片描述
少量的丢包, 我们仅仅是触发超时重传; 大量的丢包, 我们就认为网络拥塞;
当TCP通信开始后, 网络吞吐量会逐渐上升; 随着网络发生拥堵, 吞吐量会立刻下降;
拥塞控制, 归根结底是TCP协议想尽可能快的把数据传输给对方, 但是又要避免给网络造成太大压力的折中方案

延迟应答

如果接收数据的主机立刻返回ACK应答, 这时候返回的窗口可能比较小.
假设接收端缓冲区为1M. 一次收到了500K的数据; 如果立刻应答, 返回的窗口就是500K; 但实际上可能处理端处理的速度很快, 10ms之内就把500K数据从缓冲区消费掉了;在这种情况下, 接收端处理还远没有达到自己的极限, 即使窗口再放大一些, 也能处理过来;如果接收端稍微等一会再应答, 比如等待200ms再应答, 那么这个时候返回的窗口大小就是1M;一定要记得, 窗口越大, 网络吞吐量就越大, 传输效率就越高. 我们的目标是在保证网络不拥塞的情况下尽量提高传输效率;
那么所有的包都可以延迟应答么?
肯定也不是
数量限制: 每隔N个包就应答一次;
时间限制: 超过最大延迟时间就应答一次;
具体的数量和超时时间, 依操作系统不同也有差异; 一般N取2, 超时时间取200ms;

捎带应答和面向字节流

捎带应答:每一份TCP报文既有确认序号,又有序号,也就是说既有收到的信息,也有发给对端的信息,这就是捎带应答,例如三次握手的第二次
面向字节流
创建一个TCP的socket, 同时在内核中创建一个 发送缓冲区 和一个 接收缓冲区;调用write时, 数据会先写入发送缓冲区中;
如果发送的字节数太长, 会被拆分成多个TCP的数据包发出;
如果发送的字节数太短, 就会先在缓冲区里等待, 等到缓冲区长度差不多了, 或者其他合适的时机发送出
去;
接收数据的时候, 数据也是从网卡驱动程序到达内核的接收缓冲区;
然后应用程序可以调用read从接收缓冲区拿数据;
另一方面, TCP的一个连接, 既有发送缓冲区, 也有接收缓冲区, 那么对于这一个连接, 既可以读数据, 也可以写数据. 这个概念叫做 全双工
由于缓冲区的存在, TCP程序的读和写不需要一一匹配, 例如:
写100个字节数据时, 可以调用一次write写100个字节, 也可以调用100次write, 每次写一个字节;
读100个字节数据时, 也完全不需要考虑写的时候是怎么写的, 既可以一次read 100个字节, 也可以一次
read一个字节, 重复100次;

粘包问题

TCP是面向字节流的,怎么分清楚数据与数据之间呢?
答案是明确两份数据之间的边界,例如基于此的http1.0,http1.1,http2.0等的应用层协议

TCP异常情况

进程终止/机器重启:也就是正常关闭,正常走流程
机器突然掉电/网线断开:那么接受端认为连接还在,一旦进行写操作就会发现,此时进行reset,也就是询问这个连接是否还在,需要重新建立或者断开

TCP特点

可靠性:

  • 校验和
  • 序列号
  • 确认应答
  • 超时重发
  • 连接管理
  • 流量控制
  • 拥塞控制
    提高性能
  • 滑动窗口
  • 快速重传
  • 延迟应答
  • 捎带应答

TCP对比UDP

TCP不见得就比UDP好,很显然TCP为了可靠是付出了许多代价的。因此要根据场景来选择

相关文章:

TCP与UDP的理解

文章目录 UDP协议UDP协议的特点UDP的应用以及杂项 TCP协议TCP协议段格式解释和TCP过程详解确认应答机制 -- 序号和确认序号以及6位标志位中的ACK超时重传机制连接管理机制 与标志位SYN,FIN,ACK滑动窗口与16位窗口大小流量控制拥塞控制延迟应答捎带应答和面向字节流粘包问题TCP异…...

有效应对服务器遭受CC攻击的策略与实践

分布式拒绝服务(DDoS)攻击,尤其是其中的HTTP洪水攻击或称为CC攻击(Challenge Collapsar),是当今互联网安全领域的一大挑战。这种攻击通过大量合法的请求占用大量网络资源,导致服务器无法正常响应…...

STM32判断休眠

STM32是否进入休眠模式(或称为睡眠模式)的判断主要基于其功耗状态、内部时钟的关闭情况以及唤醒后的行为。以下是根据参考文章提供的信息,判断STM32是否进入休眠模式的方法: 功耗状态: STM32在休眠模式下,功耗会显著降低。这是因为休眠模式仅关闭了内核时钟,但外设仍然保…...

TikTok内嵌跨境商城全开源_搭建教程/前端uniapp+后端源码

多语言跨境电商外贸商城 TikTok内嵌商城,商家入驻一键铺货一键提货 全开源完美运营,接在tiktok里面的商城内嵌,也可单独分开出来当独立站运营 二十一种语言,可以做很多国家的市场,支持商家入驻,多店铺等等…...

前端学习(二)

这篇文章是紧接着前一篇前端学习写的,主要要写的是js剩下的基础知识 事件的绑定 什么是事件? HTML 事件可以是浏览器行为,也可以是用户行为。 当这些一些行为发生时,可以自动触发对应的JS函数的运行,我们称之为事件发生.JS的事件驱动指的就是…...

链接追踪系列-10.mall-swarm微服务运行并整合elk-上一篇的番外

因为上一篇没对微服务代码很详细地说明,所以在此借花献佛,使用开源的微服务代码去说明如何去做链路追踪。 项目是开源项目,fork到github以及gitee中,然后拉取到本地 后端代码: https://gitee.com/jelex/mall-swarm.gi…...

用Agent大模型,我发现了Prompt工程师的10大必备技能

随着 AI 如此快速的发展,目前求职市场上已经出现了 AI提示词 岗位。 大家应该跟我一样,对这种新兴岗位充满好奇心,比如:想知道这类岗位目前的需求量、技能要求、薪资情况等等。 这两天我用 Agent 大模型,对AI提示词岗…...

【GraphRAG】微软 graphrag 效果实测

GraphRAG 本文将基于以下来源,对Microsoft GraphRAG分析优缺点、以及示例实测分析。 1. Source 代码仓库: Welcome to GraphRAGhttps://microsoft.github.io/graphrag/ 微软文章1(2024.2.13):GraphRAG: Unlocking…...

十大常用加密软件排行榜|2024企业常用加密软件推荐

在2024年的市场环境中,随着数字化转型的深入和网络威胁的日益复杂,企业对数据安全的重视达到了新高度。加密软件作为保护信息免遭未授权访问和恶意攻击的关键工具,其重要性日益凸显。以下是根据市场反馈和专业评测整理的2024年度十大常用加密…...

lua 游戏架构 之 资源加载 LoaderManager (一)

定义一个 LoaderManager class,用于管理各种资源加载器。它使用了对象池(Object Pool)来优化资源加载器的创建和销毁,从而提高性能 举例定义一个 PrefabLoader --[[Desc: 封装AAS的接口,加载Prefab --]]---alias Pre…...

【人工智能】-- 迁移学习

个人主页:欢迎来到 Papicatch的博客 课设专栏 :学生成绩管理系统 专业知识专栏: 专业知识 文章目录 🍉引言 🍉迁移学习 🍈基本概念 🍍定义 🍌归纳迁移学习(Induct…...

Flink源码学习资料

Flink系列文档脑图 由于源码分析系列文档较多,本人绘制了Flink文档脑图。和下面的文档目录对应。各位读者可以选择自己感兴趣的模块阅读并参与讨论。 此脑图不定期更新中…… 文章目录 以下是本人Flink 源码分析系列文档目录,欢迎大家查阅和参与讨论。…...

HarmonyOS4.0开发-环境配置

鸿蒙应⽤开发快速体验 1.1. 准备开发环境 1.1.1 安装IDE 鸿蒙应⽤开发需要使⽤配套的IDE——HUAWEI DevEco Studio。 DevEco Studio基于IntelliJIDEA Community(IDEA社区版)构建,为鸿蒙应⽤提供了⼀站式开发环境,集成了开发、运⾏…...

GESP CCF C++ 三级认证真题 2024年6月

第 1 题 小杨父母带他到某培训机构给他报名参加CCF组织的GESP认证考试的第1级,那他可以选择的认证语言有()种。 A. 1 B. 2 C. 3 D. 4 第 2 题 下面流程图在yr输入2024时,可以判定yr代表闰年,并输出 2月是29天 &#x…...

华为的热机备份和流量限制

要求: 12,对现有网络进行改造升级,将当个防火墙组网改成双机热备的组网形式,做负载分担模式,游客区和DMZ区走FW4,生产区和办公区的流量走FW5 13,办公区上网用户限制流量不超过100M,…...

Vite的WebSocket

Vite的webSocket SocketJava Socket概述工作原理优势劣势 Java WebSocket概述工作原理代码示例nodeJS WebSocket优势劣势 vite中的WebSocket💫代码示例使用vite进行创建服务器并对Vue实行HMR 总结 Socket Java 中的 Socket 与 WebSocket 都用于网络通信&#xff0c…...

Vue3项目基于Axios封装request请求

在 Vue 3 的项目开发中,使用 Axios 进行 HTTP 请求是非常常见的作法,为了更方便开发者更高效的进行代码编写和项目的维护,可以通过再次封装 Axios 来实现。 在本文中,博主将详细指导你如何在自己的 Vue 3 项目中使用 Axios 二次封…...

html(抽奖设计)

<!DOCTYPE html> <html><head><meta charset"UTF-8"><title>抽奖</title><style type"text/css">* {margin: 0;padding: 0;}.container {width: 800px;height: 800px;border: 1px dashed red;position: absolut…...

Linux·权限与工具(上)

1. shell命令以及运行原理 Linux严格意义上来说是一个操作系统&#xff0c;我们称之为 "核心(kernel)" &#xff0c;但我们一般的用户不呢个直接使用到核心&#xff0c;因为不会用。所以开发者在核心外面封装了一层 "外壳(shell)" 程序&#xff0c;来与核心…...

成为CMake砖家(2): macOS创建CMake本地文档的app

大家好&#xff0c;我是白鱼。 使用 CMake 的小伙伴&#xff0c; 有的是在 Windows 上&#xff0c; 还有的是在 macOS 上。之前咱们讲了 windows 上查看 cmake 本地 html 文档的方式&#xff0c; 这篇讲讲 macOS 上查看 cmake 本地 html 文档的方法。 1. 问题描述 当使用 CMa…...

基于opencv的图片加水印实现方案

加水印应该是个很常见的需求&#xff0c;但是网上找的代码&#xff0c;都感觉不太完善。记录下自己搞出来的一个方案 水印有几个需求&#xff1a; 中文文字水印文字倾斜满图都是&#xff0c;而不是只有一个地方水印文字所在之处完全展示水印 实现思路 准备水印图 我是这么…...

STM32 IAP 需要关注的一些事

1、首先要知道STM32的程序是如何分布在FLASH中的。 2、升级的时候涉及到两个程序&#xff0c;一个是bootloader&#xff0c;一个是user程序&#xff0c;这两个程序的功能分别的什么作用的&#xff1f; 3、编译的固件是怎么分布的&#xff1f;通过那个配置文件去指导编译器去排布…...

高并发服务器-使用多进程(Multi-Process)实现【C语言】

在上期的socket套接字的使用详解中&#xff08;socket套接字的使用详解&#xff09;最后实现的TCP服务器只能处理一个客户端的请求发送&#xff0c;当有其他客户端请求连接时会被阻塞。为了能同时处理多个客户端的连接请求&#xff0c;本期使用多进程的方式来解决。 解决方案步…...

线程控制

对线程的控制思路和进程相似&#xff0c;创建、等待、终止&#xff0c;只需要调用接口就行。但是在Linux下没有线程的概念&#xff0c;因为Linux的设计者认为&#xff0c;线程是一种轻量级的进程&#xff0c;毕竟创建线程只需要创建PCB。因此Linux中使用多线程必须使用第三方pt…...

Spring Data Jpa 原生SQL联表查询返回自定义DTO

Spring Data Jpa 原生SQL联表查询返回自定义DTO 方案一&#xff1a;返回Map 这个就不说了 方案二&#xff1a;实体定义成接口的形式 该方式最直观&#xff01;&#xff01;推荐&#xff01;&#xff01;&#xff01; 注意&#xff1a;XxxDto是interface接口&#xff0c;而…...

Hadoop3:HDFS存储优化之小文件归档

一、情景说明 我们知道&#xff0c;NameNode存储一个文件元数据&#xff0c;默认是150byte大小的内存空间。 那么&#xff0c;如果出现很多的小文件&#xff0c;就会导致NameNode的内存占用。 但注意&#xff0c;存储小文件所需要的磁盘容量和数据块的大小无关。 例如&#x…...

Golang | Leetcode Golang题解之第234题回文链表

题目&#xff1a; 题解&#xff1a; func reverseList(head *ListNode) *ListNode {var prev, cur *ListNode nil, headfor cur ! nil {nextTmp : cur.Nextcur.Next prevprev curcur nextTmp}return prev }func endOfFirstHalf(head *ListNode) *ListNode {fast : headslo…...

Unity Apple Vision Pro 开发(四):体积相机 Volume Camera

文章目录 &#x1f4d5;教程说明&#x1f4d5;教程内容概括&#x1f4d5;体积相机作用&#x1f4d5;创建体积相机&#x1f4d5;添加体积相机配置文件&#x1f4d5;体积相机配置文件参数&#x1f4d5;体积相机的边界盒大小&#x1f4d5;体积相机边界盒大小和应用边界盒大小的区别…...

C语言 | Leetcode C语言题解之第231题2的幂

题目&#xff1a; 题解&#xff1a; const int BIG 1 << 30;bool isPowerOfTwo(int n) {return n > 0 && BIG % n 0; }...

GitHub备份代码的学习笔记

1. 备份工具&#xff1a;GitHub CLI 2. 认证方式 2.1 公用云服务器&#xff1a;SSH 可以通过使用GitHub CLI(命令行界面)在本地创建一个新的GitHub仓库,并直接使用本地项目代码文件夹的名称作为仓库名称,无需手动输入相同的名称。这可以通过以下步骤实现: 首先,确保您已安装…...