当前位置: 首页 > news >正文

NLP教程:1 词袋模型和TFIDF模型

文章目录

  • 词袋模型
  • TF-IDF模型
  • 词汇表模型


词袋模型

  文本特征提取有两个非常重要的模型:

  • 词集模型:单词构成的集合,集合自然每个元素都只有一个,也即词集中的每个单词都只有一个。

  • 词袋模型:在词集的基础上如果一个单词在文档中出现不止一次,统计其出现的次数(频数)。

  两者本质上的区别,词袋是在词集的基础上增加了频率的维度,词集只关注有和没有,词袋还要关注有几个。
  假设我们要对一篇文章进行特征化,最常见的方式就是词袋。
  导入相关的函数库:

from sklearn.feature_extraction.text import CountVectorizer

  实例化分词对象:

vectorizer = CountVectorizer(min_df=1)
>>> vectorizer                    CountVectorizer(analyzer=...'word', binary=False, decode_error=...'strict',dtype=<... 'numpy.int64'>, encoding=...'utf-8', input=...'content',lowercase=True, max_df=1.0, max_features=None, min_df=1,ngram_range=(1, 1), preprocessor=None, stop_words=None,strip_accents=None, token_pattern=...'(?u)\\b\\w\\w+\\b',tokenizer=None, vocabulary=None)

  将文本进行词袋处理:

import jieba
from sklearn.feature_extraction.text import CountVectorizertxt="""
变压器停、送电操作时,应先将该变压器中性点接地,对于调度要求不接地的变压器,在投入系统后应拉开中性点接地刀闸。在中性点直接接地系统中,运行中的变压器中性点接地闸刀需倒换时,应先合上另一台主变压器的中性点接地闸刀,再拉开原来变压器的中性点接地闸刀。运行中的变压器中性点接地方式、中性点倒换操作的原则是保证该网络不失去接地点,采用先合后拉的操作方法。
变压器中性点的接地方式变化后其保护应相应调整,即是变压器中性点接地运行时,投入中性点零序过流保护,停用中性点零序过压保护及间隔零序过流保护;变压器中性点不接地运行时,投入中性点零序过压保护及间隔零序保护,停用中性点零序过流保护,否则有可能造成保护误动作。
"""
words = jieba.lcut(txt)     # 使用精确模式对文本进行分词
vectorizer = CountVectorizer(min_df=1)#min_df 默认为1(int),表示“忽略少于1个文档中出现的术语”,因此,默认设置不会忽略任何术语,该参数不起作用X = vectorizer.fit_transform(words)#获取对应的特征名称:
print(vectorizer.get_feature_names())#feature_names可能不等于words
#词袋化
print(X.toarray())

词袋类似array([[0, 1, 1, 1, 0, 0, 1, 0, 1],
[0, 1, 0, 1, 0, 2, 1, 0, 1],
[1, 0, 0, 0, 1, 0, 1, 1, 0],
[0, 1, 1, 1, 0, 0, 1, 0, 1]]…)

  但是如何可以使用现有的词袋的特征,对其他文本进行特征提取呢?我们定义词袋的特征空间叫做词汇表vocabulary:

vocabulary=vectorizer.vocabulary_

  针对其他文本进行词袋处理时,可以直接使用现有的词汇表:

new_vectorizer = CountVectorizer(min_df=1, vocabulary=vocabulary)

  CountVectorize函数比较重要的几个参数为:

  • decode_error,处理解码失败的方式,分为‘strict’、‘ignore’、‘replace’三种方式。
  • strip_accents,在预处理步骤中移除重音的方式。
  • max_features,词袋特征个数的最大值。
  • stop_words,判断word结束的方式。
  • max_df,df最大值。
  • min_df,df最小值 。
  • binary,默认为False,当与TF-IDF结合使用时需要设置为True。
    本例中处理的数据集均为英文,所以针对解码失败直接忽略,使用ignore方式,stop_words的方式使用english,strip_accents方式为ascii方式。

TF-IDF模型

  文本处理领域还有一种特征提取方法,叫做TF-IDF模型(term frequency–inverse document frequency,词频与逆向文件频率)。TF-IDF是一种统计方法,用以评估某一字词对于一个文件集或一个语料库的重要程度。字词的重要性随着它在文件中出现的次数成正比增加,但同时会随着它在语料库中出现的频率成反比下降。TF-IDF加权的各种形式常被搜索引擎应用,作为文件与用户查询之间相关程度的度量或评级。
TF-IDF的主要思想是,如果某个词或短语在一篇文章中出现的频率TF(Term Frequency,词频),词频高,并且在其他文章中很少出现,则认为此词或者短语具有很好的类别区分能力,适合用来分类。TF-IDF实际上是:TF * IDF。TF表示词条在文档d中出现的频率。IDF(inverse document frequency,逆向文件频率)的主要思想是:如果包含词条t的文档越少,也就是n越小,IDF越大,则说明词条t具有很好的类别区分能力。如果某一类文档C中包含词条t的文档数为m,而其他类包含t的文档总数为k,显然所有包含t的文档数n=m+k,当m大的时候,n也大,按照IDF公式得到的IDF的值会小,就说明该词条t类别区分能力不强。但是实际上,如果一个词条在一个类的文档中频繁出现,则说明该词条能够很好代表这个类的文本的特征,这样的词条应该给它们赋予较高的权重,并选来作为该类文本的特征词以区别与其他类文档。

示例
文档

中文停用词见
停用词

import jieba
import pandas as pd
import re
from sklearn.feature_extraction.text import CountVectorizer#词袋
from sklearn.feature_extraction.text import TfidfTransformer#tfidffile=pd.read_excel("文档.xls")# 定义删除除字母,数字,汉字以外的所有符号的函数
def remove_punctuation(line):line = str(line)if line.strip() == '':return ''rule = re.compile(u"[^a-zA-Z0-9\u4E00-\u9FA5]")line = rule.sub('', line)return line#停用词
def stopwordslist(filepath):try:stopwords = [line.strip() for line in open(filepath, 'r', encoding='utf-8').readlines()]except:stopwords = [line.strip() for line in open(filepath, 'r', encoding='gbk').readlines()]return stopwords# 加载停用词
stopwords = stopwordslist("停用词.txt")#去除标点符号
file['clean_review']=file['文档'].apply(remove_punctuation)
# 去除停用词
file['cut_review'] = file['clean_review'].apply(lambda x: " ".join([w for w in list(jieba.cut(x)) if w not in stopwords]))#词袋计数
count_vect = CountVectorizer()
X_train_counts = count_vect.fit_transform(file['cut_review'])#tf-idf
tfidf_transformer = TfidfTransformer()
X_train_tfidf = tfidf_transformer.fit_transform(X_train_counts)

X_train_tfidf
(0, 123) 0.08779682150216786 表示第1篇文档词袋中第123个单词的tdidf为0.087

X_train_tfidf.toarray()

词汇表模型

词袋模型可以很好的表现文本由哪些单词组成,但是却无法表达出单词之间的前后关系,于是人们借鉴了词袋模型的思想,使用生成的词汇表对原有句子按照单词逐个进行编码。TensorFlow默认支持了这种模型:

tf.contrib.learn.preprocessing.VocabularyProcessor (max_document_length,    min_frequency=0,vocabulary=None,tokenizer_fn=None)

其中各个参数的含义为:

  • max_document_length:,文档的最大长度。如果文本的长度大于最大长度,那么它会被剪切,反之则用0填充。
  • min_frequency,词频的最小值,出现次数小于最小词频则不会被收录到词表中。
  • vocabulary,CategoricalVocabulary 对象。
  • tokenizer_fn,分词函数。

假设有如下句子需要处理:

x_text =['i love you','me too'
]

基于以上句子生成词汇表,并对’i me too’这句话进行编码:

 vocab_processor = learn.preprocessing.VocabularyProcessor(max_document_length)vocab_processor.fit(x_text)print next(vocab_processor.transform(['i me too'])).tolist()x = np.array(list(vocab_processor.fit_transform(x_text)))print x

运行程序,x_text使用词汇表编码后的数据为:
[[1 2 3 0]
[4 5 0 0]]
'i me too’这句话编码的结果为:
[1, 4, 5, 0]

相关文章:

NLP教程:1 词袋模型和TFIDF模型

文章目录 词袋模型TF-IDF模型词汇表模型 词袋模型 文本特征提取有两个非常重要的模型&#xff1a; 词集模型&#xff1a;单词构成的集合&#xff0c;集合自然每个元素都只有一个&#xff0c;也即词集中的每个单词都只有一个。 词袋模型&#xff1a;在词集的基础上如果一个单词…...

【开源 Mac 工具推荐之 2】洛雪音乐(lx-music-desktop):免费良心的音乐平台

旧版文章&#xff1a;【macOS免费软件推荐】第6期&#xff1a;洛雪音乐 Note&#xff1a;本文在旧版文章的基础上&#xff0c;新更新展示了一些洛雪音乐的新功能&#xff0c;并且描述更为详细。 简介 洛雪音乐&#xff08;GitHub 名&#xff1a;lx-music-desktop &#xff09;…...

AMEYA360:思瑞浦推出汽车级理想二极管ORing控制器TPS65R01Q

聚焦高性能模拟芯片和嵌入式处理器的半导体供应商思瑞浦3PEAK(股票代码&#xff1a;688536)发布汽车级理想二极管ORing控制器TPS65R01Q。 TPS65R01Q拥有20mV正向调节功能&#xff0c;降低系统损耗。快速反向关断(Typ&#xff1a;0.39μs)&#xff0c;在电池反向和各种汽车电气瞬…...

简约的悬浮动态特效404单页源HTML码

源码介绍 简约的悬浮动态特效404单页源HTML码,页面简约美观,可以做网站错误页或者丢失页面,将下面的代码放到空白的HTML里面,然后上传到服务器里面,设置好重定向即可 效果预览 完整源码 <!DOCTYPE html> <html><head><meta charset="utf-8&q…...

Golang 创建 Excel 文件

经常会遇到需要导出数据报表的需求&#xff0c;除了可以通过 encoding/csv 导出 CSV 以外&#xff0c;还可以使用 https://github.com/qax-os/excelize 导出 xlsx 等格式的 excel&#xff0c;下面封装了一个方法&#xff0c;支持多 sheet 的 excel 数据生成&#xff0c;导出按需…...

探索GitHub上的两个革命性开源项目

在数字世界中&#xff0c;总有一些项目能够以其创新性和实用性脱颖而出&#xff0c;吸引全球开发者的目光。今天&#xff0c;我们将深入探索GitHub上的两个令人惊叹的开源项目&#xff1a;Comic Translate和GPTPDF&#xff0c;它们不仅改变了我们处理信息的方式&#xff0c;还极…...

SpringBoot框架学习笔记(三):Lombok 和 Spring Initailizr

1 Lombok 1.1 Lombok 介绍 &#xff08;1&#xff09;Lombok 作用 简化JavaBean开发&#xff0c;可以使用Lombok的注解让代码更加简洁Java项目中&#xff0c;很多没有技术含量又必须存在的代码&#xff1a;POJO的getter/setter/toString&#xff1b;异常处理&#xff1b;I/O…...

【ASP.NET网站传值问题】“object”不包含“GetEnumerator”的公共定义,因此 foreach 语句不能作用于“object”类型的变量等

问题一&#xff1a;不允许遍历 原因&#xff1a;实体未强制转化 后端: ViewData["CateGroupList"] grouplist; 前端加上&#xff1a;var catelist ViewData["CateGroupList"] as List<Catelogue>; 这样就可以遍历catelist了 问题二&#xff1a…...

Stateflow中的状态转换表

状态转换表是表达顺序模态逻辑的另一种方式。不要在Stateflow图表中以图形方式绘制状态和转换&#xff0c;而是使用状态转换表以表格格式表示模态逻辑。 使用状态转换表的好处包括&#xff1a; 易于对类列车状态机进行建模&#xff0c;其中模态逻辑涉及从一个状态到其邻居的转换…...

结合Redis解决接口幂等性问题

结合Redis解决接口幂等性问题 引言正文收获 引言 该问题产生背景是根据需求描述&#xff0c;要求对已发布的课程能进行编辑修改&#xff0c;并且要求能进行回滚。 幂等性问题描述&#xff1a;对同一个接口并发请求产生的结果是不变的。 Get 请求以及 Delete 请求天然保证幂等…...

2024算力基础设施安全架构设计与思考(免费下载)

算网安全体系是将数据中心集群、算力枢纽、一体化大数据中心三个层级的安全需求进行工程化解耦&#xff0c;从国家安全角度统筹设计&#xff0c;通过安全 服务化方式&#xff0c;依托威胁情报和指挥协同通道将三层四级安全体系串联贯通&#xff0c;达成一体化大数据安全目标。 …...

ExoPlayer架构详解与源码分析(15)——Renderer

系列文章目录 ExoPlayer架构详解与源码分析&#xff08;1&#xff09;——前言 ExoPlayer架构详解与源码分析&#xff08;2&#xff09;——Player ExoPlayer架构详解与源码分析&#xff08;3&#xff09;——Timeline ExoPlayer架构详解与源码分析&#xff08;4&#xff09;—…...

网络安全-等级保护制度介绍

一、等保发展历程 &#xff08;1&#xff09;1994国务院147号令 第一次提出等级保护概念&#xff0c;要求对信息系统分等级进行保护 &#xff08;2&#xff09;1999年GB17859 国家强制标准发布&#xff0c;信息系统等级保护必须遵循的法规 &#xff08;3&#xff09;2005年公安…...

【介绍下大数据组件之Storm】

&#x1f3a5;博主&#xff1a;程序员不想YY啊 &#x1f4ab;CSDN优质创作者&#xff0c;CSDN实力新星&#xff0c;CSDN博客专家 &#x1f917;点赞&#x1f388;收藏⭐再看&#x1f4ab;养成习惯 ✨希望本文对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提出…...

React Hook 总结(React 萌新升级打怪中...)

1 useCallback useMemo 和 useCallback 接收的参数都是一样&#xff0c;都是在其依赖项发生变化后才执行&#xff0c;都是返回缓存的值&#xff0c;区别在于 useMemo 返回的是函数运行的结果&#xff0c;useCallback 返回的是函数。 当需要使用 useCallback 的情况通常包括以…...

Typora 1.5.8 版本安装下载教程 (轻量级 Markdown 编辑器),图文步骤详解,免费领取

文章目录 软件介绍软件下载安装步骤激活步骤 软件介绍 Typora是一款基于Markdown语法的轻量级文本编辑器&#xff0c;它的主要目标是为用户提供一个简洁、高效的写作环境。以下是Typora的一些主要特点和功能&#xff1a; 实时预览&#xff1a;Typora支持实时预览功能&#xff0…...

mac docker no space left on device

mac 上 docker 拉取镜像报错 Error response from daemon: write /var/lib/docker/tmp/docker-export-3995807640/b8464f52498789c4ebbc063d508f04e8d2586567fbffa475e3cd9afd3c5a7cf2/layer.tar: no space left on device解决&#xff1a; 增加 docker 虚拟磁盘大小。如下图...

单片机主控的基本电路

论文 1.复位电路 2.启动模式设置接口 3.VBAT供电接口 4.MCU 基本电路 5.参考电压选择端口...

【19】读感 - 架构整洁之道(一)

概述 《架构整洁之道》一书中有提到设计和架构的感念&#xff0c;它们究竟是什么&#xff1f;书是这么说的&#xff0c;它们的层次不一样&#xff0c;架构更“高层级”的说法&#xff0c;这类讨论一般都把“底层”的实现细节排除在外。而设计往往指代的具体的系统底层组织结构…...

多层全连接神经网络(三)---分类问题

问题介绍 机器学习中的监督学习主要分为回归问题和分类问题&#xff0c;我们之前已经讲过回归问题了&#xff0c;它希望预测的结果是连续的&#xff0c;那么分类问题所预测的结果就是离散的类别。这时输入变量可以是离散的&#xff0c;也可以是连续的&#xff0c;而监督学习从数…...

签名优化:请求数据类型不是`application/json`,将只对随机数进行签名计算,例如文件上传接口。

文章目录 I 签名进行请求数据类型类型判断1.1 常见的ContentType1.2 签名切面处理1.3 文件上传案例1.4 处理接口信息背景: 文件上传接口的请求数据类型通常为multipart/form-data,方便携带文本域和使用接口文档进行调试。 如果携带JSON数据,不方便调试接口。 前端数据也要特…...

PostgreSQL的Json数据类型如何使用

PostgreSQL中的JSON数据类型提供了一种灵活的方式来存储JSON&#xff08;JavaScript Object Notation&#xff09;数据。JSON是一种轻量级的数据交换格式&#xff0c;易于人阅读和编写&#xff0c;同时也易于机器解析和生成。在PostgreSQL中&#xff0c;你可以使用JSON和JSONB&…...

SpringData JPA Mongodb 查询部分字段

JPA 网上用的好像不多&#xff0c;找了好多材料以后最终找了这个可行的方案&#xff1a; Query(fields "{tender_id:1,_id:0}")List<MGPltTender> findByTenderIdIsNotNull(PageRequest pageRequest); 调用&#xff1a; Sort sort Sort.by(popularType.getC…...

NC65 设置下拉列表框值

NC65 设置下拉列表框值&#xff0c;如人员任职信息的异动事件&#xff1a; // 只有在入职登记时&#xff0c;才为异动事件下拉框过滤掉【离职】和【离职后变动】两个item DefaultConstEnum[] enumItems initTransevent(); BillItem item getBillCardPanel().getHeadItem(Psn…...

小阿轩yx-高性能内存对象缓存

小阿轩yx-高性能内存对象缓存 案例分析 案例概述 Memcached 是一款开源的高性能分布式内存对象缓存系统用于很多网站提高访问速度&#xff0c;尤其是需要频繁访问数据的大型网站是典型的 C/S 架构&#xff0c;需要构建 Memcached 服务器端与 Memcached API 客户端用 C 语言…...

华中师范大学学报人文社会科学版

一、《华中师范大学学报(人文社会科学版)》是国家教育部主管、华中师范大学主办的人文社会科学综合性学术期刊。本刊用稿以质量为标准,不分内稿外稿。文稿一经发表,即付报酬,不收版面费。 二、根据教育部和新闻出版总署颁发的社会科学学报编排规范,来稿应注意以下各项: 1. 题…...

CI/CD的node.js编译报错npm ERR! network request to https://registry.npmjs.org/

1、背景&#xff1a; 在维护paas云平台过程中&#xff0c;有研发反馈paas云平台上的CI/CD的前端流水线执行异常。 2、问题描述&#xff1a; 流水线执行的是前端编译&#xff0c;使用的是node.js环境。报错内容如下&#xff1a; 2024-07-18T01:23:04.203585287Z npm ERR! code E…...

用ssh tunnel的方式设置 AWS DocumentDB 公网访问

AWS DocumentDB的设定是只允许VPC内进行访问的&#xff0c;同时官方文档给了步骤&#xff0c;通过ssh tunnel的方式&#xff0c;可以从公网&#xff0c;或者从VPC外的网络&#xff0c;对DocumentDB进行访问。 我阅读了AWS官方文档并测试了这个步骤&#xff0c;如下是详细的步骤…...

基于电鸿(电力鸿蒙)的边缘计算网关,支持定制

1 产品信息 边缘计算网关基于平头哥 TH1520 芯片&#xff0c;支持 OpenHarmony 小型系统&#xff0c;是 连接物联网设备和云平台的重要枢纽&#xff0c;可应用于城市基础设施&#xff0c;智能工厂&#xff0c;智能建筑&#xff0c;营业网点&#xff0c;运营 服务中心相关场…...

WPF之URI的使用

pack://application:, pack://application:, 是一个在 WPF (Windows Presentation Foundation) 应用程序中用于指定资源位置的 URI (统一资源标识符) 方案的特定格式。这个格式用于访问嵌入在应用程序程序集&#xff08;assemblies&#xff09;中的资源&#xff0c;如图像、XA…...

个人网站电商怎么做/网推是干什么的

目录结构 we7 ├─ addons 模块安装目录(意为附加组件) │ ├─ business 模块的名称(示例) │ │ ├─ images 建议 css 文件也放此目录. │ │ ├─ template 模板目录 │ │ │ ├─ mobile APP 端模板目录 │ │ │ │ └─ ... *.html APP 端模板文件 │ │ │ └─ ... …...

深圳网站建设的客户在哪里/做一套二级域名网站怎么做

PHP1 1994年&#xff0c;一位名叫Rasmus lerdorf的兄台为了在网上展示自己的履历和网页流量的统计&#xff0c;用Perl开发了一套脚本&#xff0c;后来因与日俱增的需求无法得到满足&#xff0c;lerdorf便使用c语言进行了重写&#xff0c;重写后的程序支持数据库的访问&#xff…...

虚拟app制作/seo主要优化

摘要&#xff1a;随着天然气工业的快速发展和需求量的迅猛增加,以及我国节能减排,能源战略优化,天然气脱酸脱水研究越来越受到重视和关注,开展对天然气净化装置进行模拟优化研究具有十分重要的意义.本文通过采用Aspen Hysys软件对某海上平台处理量为220-104m3/d的天然气脱硫脱碳…...

网站建设多少钱/东莞网站营销推广

ubuntu安装pycharm的方法如下所示&#xff1a;1. 下载选择Linux Tab&#xff0c;选择下载免费的Community Edition.2. 安装PyCharm按照官网给出的安装指导【2】进行安装。(1) Copy the pycharm-*.tar.gz to the desired installation location (make sure you have rw permissi…...

东莞做个网站/2345网址导航官网下载安装

RAID的几大类&#xff1a; RAID0: 条带化存储&#xff0c;无校验。因此读写性能最高&#xff0c;然而最不安全。至少使用两块磁盘。 RAID1: 条带化存储&#xff0c;数据镜像&#xff0c;无校验&#xff0c;因此允许单个磁盘故障。至少两块磁盘。 RAID3:条带化存储&#xff0c;校…...

微友说是做网站维护让帮忙投注/软文代写代发

最近的阶乘问题接触的比较多。 计算n&#xff01;的末尾非0数是一个比较经典的问题。 那么对于小数据的该问题&#xff0c;还是比较容易的。RQNOJ点击打开链接SWOJ点击打开链小数据的方法都是可以过的。 所谓小数据的方法就是&#xff0c;在计算阶乘的时候&#xff0c;末尾…...