PyTorch 深度学习实践-处理多维特征的输入
视频指路
参考博客笔记
参考笔记二
通过多个线性模型来模拟非线性的空间变换,矩阵计算就是不同维度之间的空间转换
说明:1、乘的权重(w)都一样,加的偏置(b)也一样。b变成矩阵时使用广播机制。神经网络的参数w和b是网络需要学习的,其他是已知的。
2、学习能力越强,有可能会把输入样本中噪声的规律也学到。我们要学习数据本身真实数据的规律,学习能力要有泛化能力。
3、该神经网络共3层;第一层是8维到6维的非线性空间变换,第二层是6维到4维的非线性空间变换,第三层是4维到1维的非线性空间变换。
4、本算法中torch.nn.Sigmoid() # 将其看作是网络的一层,而不是简单的函数使用
5、torch.sigmoid、torch.nn.Sigmoid和torch.nn.functional.sigmoid的区别
在这里插入图片描述
可以自己随意在Model类中改torch.nn.Linear的变换,尝试后发现激活函数改成ReLU比sigmod最后得到的精确率高一些
import numpy as np
import torch
import matplotlib.pyplot as plt# prepare dataset
xy = np.loadtxt('diabetes.csv', delimiter=',', dtype=np.float32)
x_data = torch.from_numpy(xy[:, :-1]) # 第一个‘:’是指读取所有行,第二个‘:’是指从第一列开始,最后一列不要
y_data = torch.from_numpy(xy[:, [-1]]) # [-1] 最后得到的是个矩阵# design model using classclass Model(torch.nn.Module):def __init__(self):super(Model, self).__init__()self.linear1 = torch.nn.Linear(8, 6) # 输入数据x的特征是8维,x有8个特征self.linear2 = torch.nn.Linear(6, 4)self.linear3 = torch.nn.Linear(4, 1)# self.linear4 = torch.nn.Linear(4, 1)self.activate = torch.nn.ReLU() # 将其看作是网络的一层,而不是简单的函数使用def forward(self, x):x = self.activate(self.linear1(x))x = self.activate(self.linear2(x))x = torch.sigmoid(self.linear3(x)) # y hat# x = self.sigmoid(self.linear4(x)) # y hatreturn xmodel = Model()# construct loss and optimizer
# criterion = torch.nn.BCELoss(size_average = True)
criterion = torch.nn.BCELoss(reduction='mean')
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)# training cycle forward, backward, update
for epoch in range(10000):y_pred = model(x_data)loss = criterion(y_pred, y_data)# print(epoch, loss.item())optimizer.zero_grad()loss.backward()optimizer.step()if epoch % 1000 == 999:y_pred_label = torch.where(y_pred >= 0.5, torch.ones_like(y_pred), torch.zeros_like(y_pred))#概率大于0.5为1acc = torch.eq(y_pred_label, y_data).sum().item() / y_data.size(0)#计算正确率print("loss = ", loss.item(), "acc = ", acc)
相关文章:

PyTorch 深度学习实践-处理多维特征的输入
视频指路 参考博客笔记 参考笔记二 通过多个线性模型来模拟非线性的空间变换,矩阵计算就是不同维度之间的空间转换 说明:1、乘的权重(w)都一样,加的偏置(b)也一样。b变成矩阵时使用广播机制。神经网络的参数w和b是网络需要学习的,…...
常见逻辑漏洞举例
文章目录 简介用户名可枚举验证码可绕过/验证码回传越权访问任意密码修改验证码回传订单金额任意修改URL跳转漏洞短信轰炸找回密码还有很多逻辑漏洞,其实并没有什么技巧,要分析清楚他的业务逻辑,可能很多正常的流程中就存在着逻辑漏洞。 简介…...

FastAPI 学习之路(五十九)封装统一的json返回处理工具
在本篇文章之前的接口,我们每个接口异常返回的数据格式都不一样,处理起来也没有那么方便,因此我们可以封装一个统一的json。 from fastapi import status from fastapi.responses import JSONResponse, Response from typing import Unionde…...
tg小程序前端-dogs前端源码分析
tg小程序前端-dogs前端源码分析 前端源码 index.html <!DOCTYPE html> <html lang="en"><head><script src="https://telegram.org/js/telegram-web-app.js" onload="window.Telegram.WebApp.expand(); window.Telegram.WebA…...

Linux——多路复用之select
目录 前言 一、select的认识 二、select的接口 三、select的使用 四、select的优缺点 前言 在前面,我们学习了五种IO模型,对IO有了基本的认识,知道了select效率很高,可以等待多个文件描述符,那他是如何等待的呢&a…...
探索.NET内存之海:垃圾回收的艺术与实践
简述 在.NET的广阔天地中,内存管理如同航海中的罗盘,指引着程序的稳健运行和性能的极致优化。作为软件工程师,我们时常在代码的海洋中航行,而内存管理则是确保航程顺畅的关键。本文将带您深入.NET的内存管理世界,一探垃…...

路由数据获取及封装方法
数据库设计 自联表 定义tree字段 public class LabelValue{public int label { get; set; }public string? value { get; set; }public List<LabelValue> children { get; set; }}获取路由方法 public Response<object> getMenuList() {Response<object>…...

Visual Studio Code 实现远程开发
Background 远程开发是指开发人员在本地计算机上进行编码、调试和测试,但实际的开发环境、代码库或应用程序运行在远程服务器上。远程开发的实现方式多种多样,包括通过SSH连接到远程服务器、使用远程桌面软件、或者利用云开发环境等。这里我们是使用VSCo…...
基于STM32设计的人体健康监测系统(华为云IOT)(189)
基于STM32设计的人体健康监测系统(华为云IOT)(189) 文章目录 一、前言1.1 项目介绍【1】项目功能介绍【2】项目硬件模块组成1.2 设计思路【1】整体设计思路【2】整体构架【3】ESP8266模块配置【4】上位机开发思路【5】供电方式1.3 项目开发背景【1】选题的意义【2】可行性分析【…...

开源防病毒工具--ClamAV
产品文档:简介 - ClamAV 文档 开源地址:Cisco-Talos/clamav:ClamAV - 文档在这里:https://docs.clamav.net (github.com) 一、引言 ClamAV(Clam AntiVirus)是一个开源的防病毒工具,广泛应用…...

【网络】Socket编程
文章目录 正确理解端口号理解源IP地址和目的IP地址认识端口号端口号和进程ID 理解Socket网络字节序socket编程接口创建socket套接字bind绑定套接字listen建立监听accept接受连接connect建立连接sendto发送数据接收数据close关闭套接字 sockaddr结构体 正确理解端口号 理解源IP…...

【鸿蒙学习笔记】舜和酒店项目开发
这里写目录标题 前期准备1. 环境准备2. 开发工具准备 创建项目1. 使用 deveco-studio 创建 ShunHeHotel 项目2. 把ShunHeHotel 项目使用git进行版本控制3. 提交第1个commit,Alt0 → 输入commit message → 提交4. 查看已经提交的第一个提交5. gitcode 创建同名远程项…...
再进行程序的写时,不要使用eval函数——内建函数eval的坏处!!!!!!!!
一、安全性问题 执行任意代码: eval函数可以执行任意的Python表达式,包括算术运算、逻辑判断、字符串操作等,甚至可以访问当前作用域中的所有变量和函数。这意味着,如果eval处理的字符串来自不可信的源(如用户输入、外…...

Flink HA
目录 Flink HA集群规划 环境变量配置 masters配置 flink-conf.yaml配置 测试 Flink HA集群规划 FLink HA集群规划如下: IP地址主机名称Flink角色ZooKeeper角色192.168.128.111bigdata111masterQuorumPeerMain192.168.128.112bigdata112worker、masterQuorumPee…...

神经网络中如何优化模型和超参数调优(案例为tensor的预测)
总结: 初级:简单修改一下超参数,效果一般般但是够用,有时候甚至直接不够用 中级:optuna得出最好的超参数之后,再多一些epoch让train和testloss整体下降,然后结果就很不错。 高级:…...
使用AJAX发起一个异步请求,从【api_endpoint】获取数据,并在成功时更新页面上的【target_element】
使用AJAX发起一个异步请求,从【api_endpoint】获取数据,并在成功时更新页面上的【target_element】 在Web开发中,使用AJAX(Asynchronous JavaScript and XML,异步JavaScript和XML)可以实现在不刷新整个页面…...

【AI绘画教程】Stable Diffusion 1.5 vs 2
在本文中,我们将总结稳定扩散 1 与稳定扩散 2 辩论中的所有要点。我们将在第一部分中查看这些差异存在的实际原因,但如果您想直接了解实际差异,您可以跳下否定提示部分。让我们开始吧! Stable Diffusion 2.1 发布与1.5相比&#x…...

纯前端小游戏,4096小游戏,有音效,Html5,可学习使用
// 游戏开始运行create: function(){this.fieldArray [];this.fieldGroup this.add.group();this.score 0;//4096 增加得分this.bestScore localStorage.getItem(gameOptions.localStorageName) null ? 0 : localStorage.getItem(gameOptions.localStorageName);for(var …...

ROS、pix4、gazebo、qgc仿真ubuntu20.04
一、ubuntu、ros安装教程比较多,此文章不做详细讲解。该文章基于ubuntu20.04系统。 pix4参考地址:https://docs.px4.io/main/zh/index.html 二、安装pix4 1. git clone https://github.com/PX4/PX4-Autopilot.git --recursive 2. bash ./PX4-Autopilot…...
qt 国际化语言,英文和中文切换
1、把需要翻译转换的内用用tr()包含,比如: label->setText("hello word"); 2、在 .pro 文件中添加 TRANSLATIONS lang_en.ts \ lang_zn.ts 3、利用lupdate 工具提取…...

国防科技大学计算机基础课程笔记02信息编码
1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制,因此这个了16进制的数据既可以翻译成为这个机器码,也可以翻译成为这个国标码,所以这个时候很容易会出现这个歧义的情况; 因此,我们的这个国…...

23-Oracle 23 ai 区块链表(Blockchain Table)
小伙伴有没有在金融强合规的领域中遇见,必须要保持数据不可变,管理员都无法修改和留痕的要求。比如医疗的电子病历中,影像检查检验结果不可篡改行的,药品追溯过程中数据只可插入无法删除的特性需求;登录日志、修改日志…...

Docker 运行 Kafka 带 SASL 认证教程
Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明:server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...

Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)
概述 在 Swift 开发语言中,各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过,在涉及到多个子类派生于基类进行多态模拟的场景下,…...

学校招生小程序源码介绍
基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码,专为学校招生场景量身打造,功能实用且操作便捷。 从技术架构来看,ThinkPHP提供稳定可靠的后台服务,FastAdmin加速开发流程,UniApp则保障小程序在多端有良好的兼…...
基于数字孪生的水厂可视化平台建设:架构与实践
分享大纲: 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年,数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段,基于数字孪生的水厂可视化平台的…...
Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!
一、引言 在数据驱动的背景下,知识图谱凭借其高效的信息组织能力,正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合,探讨知识图谱开发的实现细节,帮助读者掌握该技术栈在实际项目中的落地方法。 …...

有限自动机到正规文法转换器v1.0
1 项目简介 这是一个功能强大的有限自动机(Finite Automaton, FA)到正规文法(Regular Grammar)转换器,它配备了一个直观且完整的图形用户界面,使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...

云原生安全实战:API网关Kong的鉴权与限流详解
🔥「炎码工坊」技术弹药已装填! 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、基础概念 1. API网关(API Gateway) API网关是微服务架构中的核心组件,负责统一管理所有API的流量入口。它像一座…...
LangFlow技术架构分析
🔧 LangFlow 的可视化技术栈 前端节点编辑器 底层框架:基于 (一个现代化的 React 节点绘图库) 功能: 拖拽式构建 LangGraph 状态机 实时连线定义节点依赖关系 可视化调试循环和分支逻辑 与 LangGraph 的深…...