【面试题】数据结构:堆排序的排序思想?
堆排序的排序思想?

堆排序是一种高效的排序算法,其基本思想是利用堆这种数据结构来实现排序。堆是一种特殊的完全二叉树,通常用数组来表示。堆排序的基本步骤如下:
1. 构建初始堆:
- 将待排序的数组转换成一个最大堆(或最小堆)。在最大堆中,父节点的值总是大于或等于其子节点的值。转换过程从最后一个非叶子节点开始,向上调整堆,确保堆的性质。
2. 堆排序过程:
- 将堆顶元素(最大值或最小值)与最后一个元素交换,然后将剩余的元素重新调整为堆。
- 重复上述过程,每次将堆顶元素与当前未排序部分的最后一个元素交换,并重新调整堆,直到整个数组被排序。
3. 调整堆:
- 每次交换后,需要调整堆以保持堆的性质。调整过程从交换后的堆顶元素开始,向下调整,确保每个节点都满足堆的性质。
4. 循环结束:
- 当所有元素都通过堆调整并交换到数组的前部时,排序完成。
具体步骤:
- 假设数组长度为n,初始时数组为A[1…n]。
- 将数组从后向前转换为最大堆:
- 从最后一个非叶子节点开始(即A[n/2]),向下调整堆。
- 每个节点向下调整时,比较其值与其子节点的值,如果当前节点的值小于其子节点的值,则与较大的子节点交换。
- 重复上述过程,直到堆顶元素满足最大堆的性质。
- 将堆顶元素(最大值)与数组的最后一个元素交换,然后重新调整堆。
- 重复上述过程,直到堆的大小减少到1。
时间复杂度:
- 堆排序的时间复杂度为O(n log n),其中n是数组的长度。
空间复杂度:
- 堆排序是原地排序算法,不需要额外的存储空间,因此空间复杂度为O(1)。
稳定性:
- 堆排序不是稳定的排序算法,因为相同的元素在排序过程中可能会交换位置。
代码:
// 向下调整算法,使以 parent 为根节点的堆满足大根堆性质
void AdjustDown(int* a, int parent, int n)
{assert(a);int child = parent * 2 + 1;// 确保子节点不超过堆的大小while (child < n){// 找到左右子节点中较大的一个if (child + 1 < n && a[child] < a[child + 1]){++child;}// 父节点小于较大子节点,交换父子节点位置if (a[child] > a[parent]){Swap(&a[child], &a[parent]);parent = child;child = parent * 2 + 1;}else{break; // 父节点已经大于等于子节点,退出循环}}
}// 堆排序算法
void HeapSort(int* a, int n)
{// 升序排序建大根堆,降序排序建小根堆for (int i = (n - 1) / 2; i >= 0; i--) // 从最后一个非叶子节点开始向下调整{AdjustDown(a, i, n); // 向下调整以 i 为根节点的大根堆}int end = n - 1;while (end > 0){Swap(&a[0], &a[end]); // 将堆顶元素(即最大值)与堆末尾元素交换AdjustDown(a, 0, end); // 对新的堆顶进行向下调整,使其满足大根堆性质--end; // 堆大小减 1,排除已排序好的最大值}
}
使用 priority_queue 实现
逆序:
void heapSort(vector<int>& nums) {priority_queue<int> maxHeap;// 将数组元素插入最大堆中for (int num : nums) {maxHeap.push(num);}// 依次取出堆顶元素放入结果数组中(逆序)for (int i = nums.size() - 1; i >= 0; --i) {nums[i] = maxHeap.top();maxHeap.pop();}
}
顺序:
void heapSort(vector<int>& nums) {priority_queue<int, vector<int>, greater<int>> minHeap;// 将数组元素插入最小堆中for (int num : nums) {minHeap.push(num);}// 依次取出堆顶元素放入结果数组中(顺序)for (int i = 0; i < nums.size(); ++i) {nums[i] = minHeap.top();minHeap.pop();}
}
相关文章:
【面试题】数据结构:堆排序的排序思想?
堆排序的排序思想? 堆排序是一种高效的排序算法,其基本思想是利用堆这种数据结构来实现排序。堆是一种特殊的完全二叉树,通常用数组来表示。堆排序的基本步骤如下: 1. 构建初始堆: 将待排序的数组转换成一个最大堆&a…...
PyTorch 深度学习实践-循环神经网络基础篇
视频指路 参考博客笔记 参考笔记二 文章目录 上课笔记基于RNNCell实现总代码 基于RNN实现总代码 含嵌入层的RNN网络嵌入层的作用含嵌入层的RNN网络架构总代码 其他RNN扩展基本注意力机制自注意力机制(Self-Attention)自注意力计算多头注意力机制…...
vue实现可拖拽dialog封装
一、实现modal弹窗组件 <template><divv-if"visible"class"customer-dialog"id"customer-dialog":style"dialogStyles"v-dialogDrag:[dialogDrag]><div class"dialog-container"><divclass"dial…...
本地多模态看图说话-llava
其中图片为bast64转码,方便json序列化。 其中模型llava为本地ollama运行的模型,如:ollama run llava 还有其它的模型如:llava-phi3,通过phi3微调过的版本。 实际测试下来,发现本地多模型的性能不佳&…...
人工智能算法工程师(中级)课程14-神经网络的优化与设计之拟合问题及优化与代码详解
大家好,我是微学AI,今天给大家介绍一下人工智能算法工程师(中级)课程14-神经网络的优化与设计之拟合问题及优化与代码详解。在机器学习和深度学习领域,模型的训练目标是找到一组参数,使得模型能够从训练数据中学习到有用的模式&am…...
Java异常抛出与处理方法
在Java编程中,异常处理是一个非常重要的部分。通过正确的异常处理,我们可以提高程序的健壮性和可靠性,避免程序在运行过程中出现意外的崩溃。本文将详细讲述Java异常的抛出与处理方法,并通过示例代码进行说明。 一、Java异常的分类 Java中的异常体系结构可以分为三类: 检…...
兼容性测试主要有什么类型?
兼容性测试的类型 有两种类型的兼容性测试。这是一个快速细分。 1、前向兼容性测试 向前兼容性测试或向上兼容性测试可确保当前软件版本在相关组件(例如操作系统、浏览器和第三方库)的未来版本中保持功能。此类测试对于在系统升级期间保持稳定性和用户体验至关重要。 例如&…...
设计模式--组合模式
组合模式(Composite Pattern)详解 组合模式是一种结构型设计模式,它允许你将对象组合成树形结构来表示“部分-整体”的层次结构。组合模式使得用户对单个对象和组合对象的使用具有一致性。 适用场景 需要表示对象的部分-整体层次结构时&am…...
ArduPilot开源代码之AP_DAL_RangeFinder
ArduPilot开源代码之AP_DAL_RangeFinder 1. 源由2. 框架设计2.1 枚举 Status2.2 公有方法2.3 私有成员变量 3. 重要例程3.1 应用函数3.1.1 ground_clearance_cm_orient3.1.2 max_distance_cm_orient3.1.3 has_orientation3.1.4 get_backend 3.2 其他函数3.2.1 AP_DAL_RangeFind…...
SpringCloud教程 | 第九篇: 使用API Gateway
1、参考资料 SpringCloud基础篇-10-服务网关-Gateway_springcloud gateway-CSDN博客 2、先学习路由,参考了5.1 2.1、建了一个cloudGatewayDemo,这是用来配置网关的工程,配置如下: http://localhost:18080/aaa/name 该接口代码如…...
数据结构——hash(hashmap源码探究)
hash是什么? hash也称为散列,就是把任意长度的输入,通过散列算法,变成固定长度的输出,这个输出值就是散列值。 举例来说明一下什么是hash: 假设我们要把1~12存入到一个大小是5的hash表中,我们…...
国产麒麟、UOS在线打开pdf加盖印章
PageOffice支持两种电子印章方案,可实现对Word、Excel、PDF文档加盖PageOffice自带印章或ZoomSeal电子印章(全方位保护、防篡改、防伪造)。Word和Excel的盖章功能请参考:Word和Excel加盖印章和签字功能 (目前只支持win…...
破解反爬虫策略 /_guard/auto.js(二)实战
这次我们用上篇文章讲到的方法来真正破解一下反爬虫策略,这两个案例是两个不同的网站,一个用的是 /_guard/auto.js,另一个用的是/_guard/delay_jump.js。经过解析发现这两个网站用的反爬虫策略基本是一模一样,只不过在js混淆和生成…...
同样是人工智能 客户在哪儿AI和GPT等大模型有什么不同
书接上回。为了统一回答朋友们的疑惑,此前的两篇文章,着重讲述了客户在哪儿AI的企业全历史行为数据和企业信息查询平台上的数据的区别,以及客户在哪儿AI的ToB获客服务和AI外呼机器人的获客服务的不同。本期接着讲——客户在哪儿AI VS 大模型&…...
AES Android IOS H5 加密方案
前景: 1、本项目原有功能RSA客户端对敏感信息进行加密 2、本次漏洞说是服务端返回值有敏感信息,需要密文返回 3、最初只跟H5联调成功,后续APP联调失败(H5和APP的需求排期不一致),没关注到通用性 方案: 本次方案不…...
一文了解变阻器和电位器的定义、原理、应用及其对比
变阻器的定义 两端可变电阻器(称为变阻器)利用电阻来调节电流。电阻丝环绕在陶瓷或瓷器等绝缘芯上。当刮水器沿着电阻丝移动时,电路的有效电阻会发生变化。因此,它提供了精确的电流控制。调光器、电机速度控制器和加热元件使用变…...
WPF实现一个带旋转动画的菜单栏
WPF实现一个带旋转动画的菜单栏 一、创建WPF项目及文件1、创建项目2、创建文件夹及文件3、添加引用 二、代码实现2.ControlAttachProperty类 一、创建WPF项目及文件 1、创建项目 打开VS2022,创建一个WPF项目,如下所示 2、创建文件夹及文件 创建资源文件夹&…...
使用Dockerfile构建镜像
目录 1.使用Dockerfile构建tomcat镜像 1.1 通过ARG传参构建不同版本的tomcat 2.缩小镜像的体积大小 2.1 使用较小体积的基础镜像 2.2 多级构建减少体积 1.使用Dockerfile构建tomcat镜像 cd /opt mkdir tomcat cd tomcat/ 上传tomcat所需的依赖包 使用tar xf 解压三个压缩…...
概率论原理精解【3】
文章目录 向量值向量值函数导数对称矩阵定义性质例子应用 向量值理论基础定义性质应用示例 向量值函数的导数定义性质应用 向量值 向量值函数导数 D n ⊂ R n , 向量值函数 f : D n → R m D^n \subset R^n,向量值函数f:D^n\rightarrow R^m Dn⊂Rn,向量值函数f:Dn→Rm 1. 向量…...
[C/C++入门][循环]14、计算2的幂(2的n次方)
计算2的幂(即2的n次方)非常经典。你懂几种方法呢?很多人只会一种,我们来分析一下。 可以通过多种方式实现: 1、最简单的方法之一是使用位运算符<<,它本质上是在二进制表示下对2进行左移操作&#x…...
Java 8 Stream API 入门到实践详解
一、告别 for 循环! 传统痛点: Java 8 之前,集合操作离不开冗长的 for 循环和匿名类。例如,过滤列表中的偶数: List<Integer> list Arrays.asList(1, 2, 3, 4, 5); List<Integer> evens new ArrayList…...
使用分级同态加密防御梯度泄漏
抽象 联邦学习 (FL) 支持跨分布式客户端进行协作模型训练,而无需共享原始数据,这使其成为在互联和自动驾驶汽车 (CAV) 等领域保护隐私的机器学习的一种很有前途的方法。然而,最近的研究表明&…...
高频面试之3Zookeeper
高频面试之3Zookeeper 文章目录 高频面试之3Zookeeper3.1 常用命令3.2 选举机制3.3 Zookeeper符合法则中哪两个?3.4 Zookeeper脑裂3.5 Zookeeper用来干嘛了 3.1 常用命令 ls、get、create、delete、deleteall3.2 选举机制 半数机制(过半机制࿰…...
【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例
文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...
【JavaWeb】Docker项目部署
引言 之前学习了Linux操作系统的常见命令,在Linux上安装软件,以及如何在Linux上部署一个单体项目,大多数同学都会有相同的感受,那就是麻烦。 核心体现在三点: 命令太多了,记不住 软件安装包名字复杂&…...
iOS性能调优实战:借助克魔(KeyMob)与常用工具深度洞察App瓶颈
在日常iOS开发过程中,性能问题往往是最令人头疼的一类Bug。尤其是在App上线前的压测阶段或是处理用户反馈的高发期,开发者往往需要面对卡顿、崩溃、能耗异常、日志混乱等一系列问题。这些问题表面上看似偶发,但背后往往隐藏着系统资源调度不当…...
论文阅读:LLM4Drive: A Survey of Large Language Models for Autonomous Driving
地址:LLM4Drive: A Survey of Large Language Models for Autonomous Driving 摘要翻译 自动驾驶技术作为推动交通和城市出行变革的催化剂,正从基于规则的系统向数据驱动策略转变。传统的模块化系统受限于级联模块间的累积误差和缺乏灵活性的预设规则。…...
SQL Server 触发器调用存储过程实现发送 HTTP 请求
文章目录 需求分析解决第 1 步:前置条件,启用 OLE 自动化方式 1:使用 SQL 实现启用 OLE 自动化方式 2:Sql Server 2005启动OLE自动化方式 3:Sql Server 2008启动OLE自动化第 2 步:创建存储过程第 3 步:创建触发器扩展 - 如何调试?第 1 步:登录 SQL Server 2008第 2 步…...
Kubernetes 节点自动伸缩(Cluster Autoscaler)原理与实践
在 Kubernetes 集群中,如何在保障应用高可用的同时有效地管理资源,一直是运维人员和开发者关注的重点。随着微服务架构的普及,集群内各个服务的负载波动日趋明显,传统的手动扩缩容方式已无法满足实时性和弹性需求。 Cluster Auto…...
2.3 物理层设备
在这个视频中,我们要学习工作在物理层的两种网络设备,分别是中继器和集线器。首先来看中继器。在计算机网络中两个节点之间,需要通过物理传输媒体或者说物理传输介质进行连接。像同轴电缆、双绞线就是典型的传输介质,假设A节点要给…...
