当前位置: 首页 > news >正文

人工智能大模型发展的新形势及其省思

在这里插入图片描述

作者简介

肖仰华,复旦大学计算机科学技术学院教授、博导,上海市数据科学重点实验室主任。研究方向为知识图谱、知识工程、大数据管理与挖掘。主要著作有《图对称性理论及其在数据管理中的应用》、《知识图谱:概念与技术》(合著)、《生成式语言模型与通用人工智能:内涵、路径与启示》(论文)等。

摘要

随着相关技术的不断进步,大模型发展呈现出与数据要素深度融合、其日益沉淀为基础设施、发展焦点从底座模型转移至应用生态等新的趋势。针对大模型产业发展呈现出的新态势、新动向,我们要树立大模型发展的全局观和整体观,积极采取加快建设人工智能教育体系、建立以智能科学为核心的跨学科研究体系、推动大模型与数据要素协同发展并坚持多元化的大模型发展路径等新的应对举措。作为一种先进技术,大模型具有两面性,我们在积极采取措施促进其良性发展并释放其应用价值的同时,也要密切关注其滥用、误用与恶用所带来的虚假内容泛滥、影响人类心智和能力的发展与培育等负面问题,未雨绸缪积极做好风险治理与管控。

大模型发展的新态势

**大模型产业发展焦点从基础模型走向应用生态。**当大模型具备了人类智能的基本能力,如何用好大模型就成为了重点。值得强调的是,用好大模型绝不比研发大模型容易。事实上,自ChatGPT诞生至今,大模型并未给人类切实创造多少价值,这一窘状不应归咎于大模型自身的不足,而应该归因于人类自身能力的不足,特别是大模型应用水平的不足。大模型好比武侠小说中的利器,唯有强者才能驾驭这一利器,进而释放其价值。大部分人对于大模型的应用可能就仅限于闲聊、文字润饰。大模型本质上是智者的利器,换言之,只有洞悉大模型特性的知识精英或者行家里手才能将大模型的能力淋漓尽致地发挥出来。用好大模型本身就是个人、组织、国家未来的核心竞争力之一。

大模型发展的新举措

跨学科研究另一个方向的重要使命在于“为机器立心、为智能立命”。加深对于AGI本身的认知,建立理解AGI的概念框架,是推动AGI进一步发展以及帮助人类更好地驾驭与管控AGI的根本所在。人工智能以人类智能为拓版,而今却日益呈现出其专有特性。几千年来,人类已经建立起的对于人以及由人所构成社会的认知体系与理论框架,这是我们理解AI的心智以及智能体社会的有益参考。至少可以说,以人类为模板去理解AI是理解AI的第一步。随着AGI日益融入人类生活,如何理解与控制AI个体以及群体的心智、角色、行为,是实现AI安全可控的关键,是促使AI造福人类而不致危害人类的关键。为AI“立心立命”,让AI守规守矩,是智能时代到来之前我们需要做好充分应对准备的难题之一。

如果说更大规模参数的大模型是在帮我们探索智能的极限,那么更加小型而实

一个数字分身或者智能代理泛滥的时代又会是个怎样的时代呢?这是个更加值得深入思考的问题。你的数字分身或者AI代理在多大程度上能够行使你的主体意志,每个个体又在多大程度上能够让渡主体意志给AI呢?未来社会可能将日益演变成人类及其AI代理构成的社会,人与人的关系已经无法完整地定义社会关系,人与自己的AI代理、AI代理与AI代理,成为了社会关系的必要构成。社会科学的全部内涵因此而被刷新,重建我们的社会科学成为新的历史使命。AI智能体社会的到来,势必要求重新建构人类的伦理框架、道德体系、情感框架,构建和谐的人机关系将成为社会关系发展的重要目标之一,而不单单是人与人的关系。

AI代理参与的社会也将重塑人类的生活方式和行业业态。比如,出于功能性的消费活动完全可以由AI代理完成,人类消费的真正价值可能仅在于情感体验,如精挑细选的乐趣,而不再是买到商品这一朴素目的。从这个意义上来讲,购物的功能性内涵将消失。再比如内容生产与传播行业,如果AI代理将代替人类成为内容生产与传播的主要受众或对象,那么传统的面向人的图书编辑与出版、新闻内容的生成与传播将何去何从?一定程度上可以说,几乎所有的行业都要正视一个新的事实:服务对象从人变成人的AI代理,而这一变化势必要求重塑传统行业形态。

大模型发展过程中的风险管控

作为一种先进技术,大模型具有两面性,运用得当将成为先进生产力,但运用不当也可能成为巨大破坏力。安全可控必须是发展大模型的前提,为此,我们必须未雨绸缪,对未来大模型的大规模应用所带来的诸多负面问题做好提前研判与积极准备,从全局考虑AI应用问题,不能唯生产力论AI,而应兼顾AI应用所带来的方方面面影响,并深入研判AI应用的长期影响。

**加大大模型风险管控力度,加强大模型合规应用的制度建设。**大模型会对人类社会的哪些方面产生影响?这种提问已不合时宜。其相反的问题更有价值,即人类社会的哪些方面不会受到大模型影响?答案可能是“并不多”,大模型对人类社会的影响是广泛而深远的。人类社会方方面面的发展都需要运用人类的智力,而但凡人类智识所及之处皆可为大模型用武之地。正是基于这个原因,大模型的负面影响,更加值得我们高度关注。

随着大模型的普及应用,其所带来的负面问题日益显现,如虚假内容泛滥、价值观偏差、侵犯版权、隐私泄露、人群偏见、新型信息茧房等。其一是大模型驱动的AIGC技术使得内容生成与制作的门槛大大降低,虚假内容呈现泛滥态势。传媒生态所赖以存在的信息真实性前提受到前所未有的挑战。其二是大模型存在暴露偏差等问题,即大模型训练语料可能存在各种偏差与倾向,比如种族偏见、性别偏见、文化偏见、意识形态偏见。其三是大模型给版权保护带来了前所未有的挑战。一方面,大模型厂商可能在未经授权的情况下使用版权所有者的数据进行训练。另一方面,大模型的使用者可能使用大模型生成的内容作为自主知识产权的内容。由此可见,大模型给传统知识产权概念框架与实践操作均带来了重大挑战。其四是大模型训练数据对用户隐私的侵犯,进而对传统的隐私框架提出了新要求。例如一个教授在学校网站上公开了自己的联系方式,但这并不意味着该教授希望自己的联系方式被大模型习得而为所有人认知。其五是新型信息茧房的形成,随着大模型日益成为各类互联网信息系统的新基座,信息消费者的认知将难以挣脱由大模型所编织的新型信息茧房。这些随大模型普及应用而正在逐渐显现的问题都需要有关部门加强研究,加大大模型风险管控力度,加快大模型合规应用的制度建设。

**AI大规模滥用对人类自身发展带来的长期负面影响。**显性的负面影响容易觉察,但更为致命的则是不易觉察的问题。因此,我们更需要高度警惕AI(特别是AGI技术)大规模滥用带来的隐性、长期的负面影响。所谓AI滥用是指过度地、不加限制地使用AI技术,这种滥用往往出于眼前的或者短期巨大利益的考量而有意无意忽视AI发展的长期问题,最终对人类福祉或者特定群体利益造成长期的难以弥补的侵害。AI滥用往往有着温和甚至是极具吸引力的外表,如果在推动AI成为先进生产力的过程中对AI的应用不加以区分与选择,对AI的负面问题视而不见,久而久之,AI滥用会像温水煮青蛙一般以一种缓慢而难以察觉的进程给人类带来难以挽回的伤害。鉴于此,我们需高度警惕AI的滥用问题,认识到AI应用应该“有所为、有所不为”,尽快为AI的安全应用设立基本原则。

从本质上看,大规模AI的长期滥用可能会带来人之为人的本性倒退。技术的每一次进步都可能带来人类某种能力的倒退,例如输入法技术的进步带来的是很多人的提笔忘字。但是,当达到人类智力水平的AGI大量代替人类脑力劳动时,随之而来的可能的脑力倒退却是人类难以承受的。具体而言,在个体具备某项能力之前(比如写作),不加克制地滥用AI的相应能力,将会阻碍个体获得此项能力。因而即使计算机早就能代替人类进行计算,但是我们的儿童必须付诸艰苦的训练掌握基本的计算能力。我们必须警惕人类心智的核心能力因为AI的滥用而倒退,人类心智水平的倒退,势必带来主体意志的逐步消退,而AI对于人类主体意志的侵犯,将导致难以承受的后果。

由此可见,无论AI技术发展到何种水平,AI应用都应该以保障人性和人类智能的核心素养与能力的充分发展为前提。AI应用应该为人类智力、能力的训练与实践留下充足的机会和空间,面向青少年的基础教育阶段恰恰是人类核心能力的形成时期,因而对于此阶段的AI应用应高度谨慎。同时,人类社会的大部分工作岗位,都必须保留特定规模的人群从事相应的手工工作,人类的所有技术应该像非物质文化遗产一样,指定足够规模的人类群体进行传承和发展,而AI应用应该适当“留白”。

**生产关系、社会价值观念、文化艺术创作等与AI生产力的适应性问题。**作为先进生产力,大模型对整个社会和各行各业进行全面渗透并产生革命性影响几乎是不可避免的。这就要求关系到价值观念、伦理体系、文化教育、生产关系等社会发展的方方面面都要作出积极变革和适应性调整,才能适应这种先进生产力的发展。

从短期来看,大模型等AGI技术将给就业市场带来直接影响。AGI应用的过程本质上就是AI劳动力逐步代替人类劳动力的过程,在这个过程中,越来越多的任务、工作逐步交给了效率更高、效果更好的机器。而AI代替人类的过程必须是缓慢、渐进、有序的过程,以避免剧烈的就业结构调整所带来的社会震荡。从更长时期的范围来看,大规模AI应用也可能影响现有的社会阶层结构。未来,因为AI智能水平参考线的存在,人类群体将可能被分为AI智识水平之上和之下两大层次。对于人类个体而言,跨越AI的智识水平线将变得日趋困难。随之可能带来的阶层固化甚至对立是需要正视的问题。此外,AI无节制地介入人类情感生活会让人迷失于虚拟的情感世界、甚至产生畸形的情感依赖。人与人之间的真挚情感将可能被人机虚拟情感所干扰,进而引发人类情感混乱。

大规模AI应用对人类思想、文化、艺术等方面产生的更长期的影响同样值得注意。当前,生成式人工智能已经涉足音乐、绘画、影视等几乎一切人类的艺术创作形式。人类的生命是有限的,而即使人类生命延长似乎也无法赶上艺术品生产的速度,那么,人类在有限的生命里何以享受这过于丰盛的艺术盛宴。历史上,人类从未像今天一样面临窘境:我们淹没在审美的海洋中,试问,我们会不会因此而窒息呢?如果人类个体的一生都处于审美的高亢兴奋体验之中,这样的人生又有怎样的价值与意义呢?美之泛滥是否会消灭美的本身呢?生成式人工智能的泛滥将会打破美的稀缺性,而这可能进一步消弭审美需求,进而影响传统艺术形式的发展。AI创作似乎正在快速穷尽艺术创作的组合空间,比如AI生成音乐可能很快穷举我们所能感知的绝大部分曲调,继而危及音乐这种艺术形式的存在。

为使社会发展能够以和谐的方式适应人工智能这一先进生产力,我国应充分发挥在统筹社会方面的制度优势,在生产关系调整、教育体系革新等方面作出富有前瞻性与建设性的系统谋划,并积极、严密、细致地推进相应的布局调整,避免出现剧烈冲击和较大的震荡。目前我国正处于全面深化改革的关键时期,进一步全面深化改革,要抓住主要矛盾和矛盾的主要方面,“进一步解放和发展社会生产力、增强社会活力,推动生产关系和生产力、上层建筑和经济基础更好相适应”。推动以大模型为代表的AGI技术与生产关系、上层建筑更好地适应,无疑是践行这一方针的具体措施之一。

结语

当前,大模型发展日益呈现出与数据要素融合发展、其逐渐沉淀为基础设施、发展焦点从底座模型转移至应用生态等新的趋势。以大模型为代表的AGI将成为先进生产力的代表,我们在拥抱这一先进生产力的兴奋之余,也要密切关注其滥用、误用与恶用所带来的负面问题。要以更为深入的思考、更加长远的眼光、更加全面的梳理和更加精准的研判,做好全面、积极、主动的应对,确保AI成为人类之福,而不是人类之祸。

在AGI快速发展的时代,如何打发闲暇时光,如何安置灵魂成为人类需要直面的问题。从表面上看这似乎是个幸福的烦恼,然而,笔者更愿意称其为“戴着和善面具的恶魔”。未来,人类应对AGI的利用加以适当引导与控制。即便有AI的助力,以卓越精神仰望星空也仍需要付诸常人所不能想象的艰辛和长期坚持。

古代欧洲的贵族们往往都有贴心的管家帮助其料理与经营生活,这成就了一批贵族精英代表人类专心致志、心无旁骛地探索未知世界,但更为常见的情形却是养出了大批“好吃懒做、肥头大耳”的精神侏儒。AGI日渐成为人类的贴心管家,AI代理人类社会似乎成为必然趋势,而在这一过程中人类更应奋发向上,借助AI力量去勤奋地探索未知世界,不断开辟新的认知疆域。

相关文章:

人工智能大模型发展的新形势及其省思

作者简介 肖仰华,复旦大学计算机科学技术学院教授、博导,上海市数据科学重点实验室主任。研究方向为知识图谱、知识工程、大数据管理与挖掘。主要著作有《图对称性理论及其在数据管理中的应用》、《知识图谱:概念与技术》(合著&a…...

Linux云计算 |【第一阶段】SERVICES-DAY4

主要内容: DHCP概述、PXE批量装机、配置PXE引导、Kickstart自动应答、Cobbler装机平台 一、DHCP服务概述及原理 DHCP动态主机配置协议(Dynamic Host Configuration Protocol),由IETF(Internet网络工程师任务小组&…...

微信小程序 button样式设置为图片的方法

微信小程序 button样式设置为图片的方法 background-image background-size与background-repeat与border:none;是button必须的 <view style" position: relative;"><button class"customer-service-btn" style"background-image: url(./st…...

2024 HNCTF PWN(hide_flag Rand_file_dockerfile Appetizers TTOCrv_)

文章目录 参考hide_flag思路exp Rand_file_dockerfile libc 2.31思路exp Appetizers glibc 2.35绕过关闭标准输出实例客户端 关闭标准输出服务端结果exp TTOCrv_&#x1f3b2; glibc 2.35逆向DT_DEBUG获得各个库地址随机数思路exp 参考 https://docs.qq.com/doc/p/641e8742c39…...

《昇思25天学习打卡营第25天|第14天》

今天是打卡的第十四天&#xff0c;今天学习的是应用实践中的热门LLM及其他AI应用的K近邻算法实现红酒分类篇。这一片主要介绍使用MindSpore在部分wine数据集上进行KNN实验&#xff0c;对实验的步骤的介绍&#xff1a;K近邻算法原理介绍&#xff08;分类问题、回归问题和距离的定…...

Easysearch、Elasticsearch、Amazon OpenSearch 快照兼容对比

在当今的数据驱动时代&#xff0c;搜索引擎的快照功能在数据保护和灾难恢复中至关重要。本文将对 EasySearch、Elasticsearch 和 Amazon OpenSearch 的快照兼容性进行比较&#xff0c;分析它们在快照创建、恢复、存储格式和跨平台兼容性等方面的特点&#xff0c;帮助大家更好地…...

数据分析入门指南:数据库入门(五)

本文将总结CDA认证考试中数据库中部分知识点&#xff0c;内容来源于《CDA模拟题库与备考资料PPT》 。 CDA认证&#xff0c;作为源自中国、面向全球的专业技能认证&#xff0c;覆盖金融、电信、零售、制造、能源、医疗医药、旅游、咨询等多个行业&#xff0c;旨在培养能够胜任数…...

Logback日志异步打印接入指南,输出自定义业务数据

背景 随着应用的请求量上升&#xff0c;日志输出量也会成线性比例的上升&#xff0c;给磁盘IO带来压力与性能瓶颈。应用也遇到了线程池满&#xff0c;是因为大量线程卡在输出日志。为了缓解日志同步打印&#xff0c;会采取异步打印日志。这样会引起日志中的追踪id丢失&#xf…...

将iPad 作为Windows电脑副屏的几种方法(二)

将iPad 作为Windows电脑副屏的几种方法&#xff08;二&#xff09; 1. 前言2. EV 扩展屏2.1 概述2.2 下载、安装、连接教程2.3 遇到的问题和解决方法2.3.1 平板连接不上电脑 3. Twomon SE3.1 概述3.2 下载安装教程 4. 多屏中心&#xff08;GlideX&#xff09;4.1 概述4.2 下载安…...

[word] word表格跨页断开实现教程 #职场发展#媒体

word表格跨页断开实现教程 选中整个word表格 单击鼠标右键&#xff0c;选择“表格属性”选项 切换至“行”标签&#xff0c;找到“允许跨页断行”选项 勾选上“允许跨页断行”&#xff0c;单击“确定”按钮&#xff0c;完成&#xff01; word表格跨页断开实现教程的下载地址&a…...

《Linux运维总结:基于ARM64架构CPU使用docker-compose一键离线部署单机版tendis2.4.2》

总结&#xff1a;整理不易&#xff0c;如果对你有帮助&#xff0c;可否点赞关注一下&#xff1f; 更多详细内容请参考&#xff1a;《Linux运维篇&#xff1a;Linux系统运维指南》 一、部署背景 由于业务系统的特殊性&#xff0c;我们需要面对不同的客户部署业务系统&#xff0…...

【Apache Doris】周FAQ集锦:第 14 期

【Apache Doris】周FAQ集锦&#xff1a;第 14 期 SQL问题数据操作问题运维常见问题其它问题关于社区 欢迎查阅本周的 Apache Doris 社区 FAQ 栏目&#xff01; 在这个栏目中&#xff0c;每周将筛选社区反馈的热门问题和话题&#xff0c;重点回答并进行深入探讨。旨在为广大用户…...

Log4j的原理及应用详解(四)

本系列文章简介&#xff1a; 在软件开发的广阔领域中&#xff0c;日志记录是一项至关重要的活动。它不仅帮助开发者追踪程序的执行流程&#xff0c;还在问题排查、性能监控以及用户行为分析等方面发挥着不可替代的作用。随着软件系统的日益复杂&#xff0c;对日志管理的需求也日…...

农田自动化闸门的结构组成与功能解析

在现代化的农业节水灌溉领域中&#xff0c;农田自动化闸门的应用越来越广泛。它集成了先进的技术&#xff0c;通过自动化控制实现水资源的精准调度和高效利用。本文将围绕农田自动化闸门的结构组成&#xff0c;详细介绍其各个部件的功能和特点。 农田自动化闸门主要由闸门控制箱…...

Python解释器:CPython 解释器

一、什么是python解释器 Python解释器是一种用于执行Python代码的程序。 它将Python源代码转换为机器语言或字节码&#xff0c;从而使计算机能够执行。 1.1 Python解释器分类 1、CPython CPython 是 Python 的主要实现&#xff0c;由 C 语言编写。大多数用户在日常开发中使…...

layui 让table里的下拉框不被遮挡

记录&#xff1a;layui 让table里的下拉框不被遮挡 /* 这个是让table里的下拉框不被遮挡 */ .goods_table .layui-select-title,.goods_table .layui-select-title input{line-height: 28px;height: 28px; }.goods_table .layui-table-cell {overflow: visible !important; }.…...

【性能优化】在大批量数据下使用 HTML+CSS实现走马灯,防止页面卡顿

切换效果 页面结构变化 1.需求背景 项目首页存有一个小的轮播模块,保密原因大概只能这么展示,左侧图片右侧文字,后端一次性返回几百条数据(开发环境下,生产环境只会更多).无法使用分页解决,前端需要懒加载防止页面卡顿 写个小demo演示,如下 2.解决思路 获取到数据后,取第一…...

https和http区别

1、安全性 HTTP信息是明文传输&#xff0c;而HTTPS则通过SSL/TLS协议进行加密传输&#xff0c;确保数据传输的安全性。HTTPS可以验证服务器身份&#xff0c;防止中间人攻击&#xff0c;保护数据的完整性和保密性。 2、端口号 HTTP默认使用80端口&#xff0c;而HTTPS默认使用…...

SD-AI大模型的安装

&#x1f4d1;打牌 &#xff1a; da pai ge的个人主页 &#x1f324;️个人专栏 &#xff1a; da pai ge的博客专栏 ☁️宝剑锋从磨砺出&#xff0c;梅花香自苦寒来 ☁️运维工程师的职责&#xff1a;监…...

UDP-如何实现客户端与服务器端的通信(一对一、一对多、多对一、多对多之间的通信)

Java中提供了DatagramSocket来实现这个功能 1.服务器端的程序 创建Socket&#xff0c;监听6666端口读取来自客户端的“数据包”,创建数据包(通过DatagramPacket实现数据包的创建)接收数据包从数据包中&#xff0c;读取数据(通过recieve()接收数据和send()发送给数据) 代码如下…...

C++那些事之依赖注入

C那些事之依赖注入 最近星球里面有个小伙伴让更新一下依赖注入&#xff0c;于是写出了这篇文章&#xff0c;来从实际的例子讲解&#xff0c;本文会讲解一些原理与实现&#xff0c;完整的实现代码懒人版放在星球中&#xff0c;我们开始正文。 大纲&#xff1a; 直接依赖接口依赖…...

克隆的TrinityCore服务器网速慢卡顿问题的解决(未解决)

一台TrinityCore服务器&#xff0c;采用的是备份克隆安装的方式&#xff0c;在FreeBSD bhyve 中安装Ubuntu&#xff0c;安装细节见如下两篇文档&#xff1a;尝试在FreeBSD 的jail、bhyve里安装TrinityCore-CSDN博客 备份和镜像TrinityCore_魔兽世界 updating auth database...…...

独立站外链如何影响搜索引擎排名?

独立站的外链对搜索引擎排名有着非常重要的影响。简单来说&#xff0c;外链就像是别的网站对你的网站投的信任票。每一条外链都告诉搜索引擎&#xff1a;“这个网站的内容是有价值的&#xff0c;值得推荐。”因此&#xff0c;外链的数量和质量直接影响你的网站在搜索引擎中的排…...

java设计模式:03-04-装饰器模式

装饰器模式&#xff08;Decorator Pattern&#xff09; 装饰器模式&#xff08;Decorator Pattern&#xff09;是一种结构型设计模式&#xff0c;它允许向一个现有的对象添加新的功能&#xff0c;同时又不改变其结构。装饰器模式通过创建一个装饰类来包装原有的类&#xff0c;…...

通过splunk web服务将服务器上文件下载到本地

1. 需求说明 工作中经常遇到需要将服务器上的文件下载到本地&#xff0c;但是由于各种网络环境限制&#xff0c;没办法使用winscp或者xftp工具&#xff0c;那么如何将服务器上的文件下载下来呢&#xff1f; 这里提供一种思路: 如果服务器上安装有web服务&#xff0c;可将待下…...

Node.js 路由

Node.js 路由 介绍 Node.js 是一个基于 Chrome V8 引擎的 JavaScript 运行环境,它允许开发者使用 JavaScript 编写服务器端代码。Node.js 的一个核心特性是其事件驱动和非阻塞 I/O 模型,这使得它非常适合处理高并发和 I/O 密集型的应用程序。在 Node.js 中,路由是指确定应…...

Adobe国际认证详解-网页设计认证专家行业应用场景解析

在当今数字化时代&#xff0c;网页设计已成为各行各业不可或缺的一环。而网页设计认证专家&#xff0c;作为经过Adobe国际认证体系严格考核的专业人才&#xff0c;正逐渐成为行业内炙手可热的存在。他们凭借深厚的网页设计理论基础和实践经验&#xff0c;为各行各业提供了高质量…...

ESC(ELectronic Stability Control,电子稳定控制系统)

ESC通过实时监测车辆的动态参数&#xff0c;以及车辆轮胎的实际运动状态&#xff0c;通过调节车辆制动系统和发动机输出力&#xff0c;使车辆在紧急或危险情况下保持稳定&#xff0c;防止侧滑和失控。 ESC组成部分 传感器&#xff1a;用于检测车辆的动态参数&#xff0c;如车…...

减分兔搜题-12123学法减分20题目及答案 #媒体#职场发展

对于即将参加驾驶考试的朋友来说&#xff0c;掌握一些经典题目和答案至关重要。今天&#xff0c;我就为大家带来了这样一份干货——20道驾驶考试题目和答案&#xff0c;助你轻松应对考试&#xff01;这些题目不仅包括了考试中常考的内容&#xff0c;还有针对难点和重点的详细解…...

java用freemarker导出word

freemarker导出word 第一步、将word转换为xml格式第二步、将转换后的xml文件修改后缀为ftl后复制到项目 resources 目录下&#xff08;可以自己新建一个文件夹放在文件夹中&#xff09;第三步、格式化xml代码&#xff08;如果问价太大可能会无法格式化&#xff09;这时候需要在…...

个人做网站能赚到钱吗/百度搜索下载

示例&#xff1a; $.ajax({ url: url, crossDomain: true, async: false,dataType:"jsonp" }); 说明&#xff1a;$.ajax&#xff08;&#xff09;有很多参数&#xff0c;实现跨域访问的关键是crossDomain必须设置为true&#xff0c;dataType必须设置为"jsonp&qu…...

西安网站建设网站建设/网站seo优化运营

本文属于「征服LeetCode」系列文章之一&#xff0c;这一系列正式开始于2021/08/12。由于LeetCode上部分题目有锁&#xff0c;本系列将至少持续到刷完所有无锁题之日为止&#xff1b;由于LeetCode还在不断地创建新题&#xff0c;本系列的终止日期可能是永远。在这一系列刷题文章…...

网站建站对象/快速搭建网站的工具

K-means聚类算法(事先数据并没有类别之分&#xff01;所有的数据都是一样的)1、概述K-means算法是集简单和经典于一身的基于距离的聚类算法采用距离作为相似性的评价指标&#xff0c;即认为两个对象的距离越近&#xff0c;其相似度就越大。该算法认为类簇是由距离靠近的对象组成…...

成立公司需要多少注册资金/seo企业站收录

用了两天时间,查找资料,不断的测试,终于实现想要的小应用.通过aiohttp实现的C/S架构的收发JSON数据的应用 前文实测基础,请参考:python小技巧大应用--实测aiohttp可正常运行的写法 在此直接上代码,希望与大家分享结果 1)服务端模块test_aiohttp_HTTPServer.py #!/usr/bin/e…...

软件下载网站怎么做/搜索引擎优化网页

本博客采用 CC BY-NC-SA 4.0 进行许可 转载于:https://www.cnblogs.com/GavinZheng/p/10799212.html...

做暧小视频xo免费网站/营销技巧和话术

指数运算符 es6新特性将 ** 作为指数操作的中缀运算符&#xff1a; x ** y // 表示y个x相乘与以下表达式运算结果相同&#xff1a; Math.pow(x, y)指数运算又叫幂运算&#xff0c;在aⁿ(a≠0)中&#xff0c;a为底数&#xff0c;n为指数&#xff0c;指数位于底数的右上&#…...