当前位置: 首页 > news >正文

R语言优雅的把数据基线表(表一)导出到word

基线表(Baseline Table)是医学研究中常用的一种数据表格,用于在研究开始时呈现参与者的初始特征和状态。这些特征通常包括人口统计学数据、健康状况和疾病史、临床指标、实验室检测、生活方式、社会经济等。

在这里插入图片描述
本人在既往文章《scitb包1.6版本发布,一个为制作专业统计表格而生的R包》发布乐我自己编写的scitb包,可以一键生成基线表,但是还是需要手动导入word,还是不是很方便,本期介绍怎么把基线表直接导入word。

首先咱们使用scitb包来生成一个基线表,先导入R包和数据,scitb包自带有我既往的早产数据,咱们直接从包调用

library(scitb)
bc<-prematurity

在这里插入图片描述
这是一个关于早产低体重儿的数据,低于2500g被认为是低体重儿。数据解释如下:low 是否是小于2500g早产低体重儿,age 母亲的年龄,lwt 末次月经体重,race 种族,smoke 孕期抽烟,ptl 早产史(计数),ht 有高血压病史,ui 子宫过敏,ftv 早孕时看医生的次数,bwt 新生儿体重数值

如何生成基线表可以看我既往的文章,这里就直接上代码了
假设咱们想race为研究目标,因为它是分类变量,咱们最好把它转成因子,因为scitb包有一定对数据类型的判定能力,如果你的分类变量类别大于5个,而你不转成因子的话,它可能自动判定为连续变量,处理方式不一样的,所以这里最好自己设定一下

bc$race<-as.factor(bc$race)

接下来就是定义全部变量,分类变量和分层变量,这和tableone包一模一样,如果你会使用tableone包,使用scitb包起来完全无压力。

allVars <-c("age", "lwt",  "smoke", "ptl", "ht", "ui", "ftv", "bwt")
fvars<-c("smoke","ht","ui")
strata<-"race"

一键生成统计结果

out<-scitb1(vars=allVars,fvars=fvars,strata=strata,data=bc)

在这里插入图片描述
接下咱们需要把这个表格导入到word里面,需要安装3个包,缺一不可,其实安装flextable包的话也会附带其他两个包安装

library(xtable)
library(flextable)
library(officer)

接下来咱们设置一下导出表格的位置

setwd("E:/公众号文章2024年/R语言优雅的把基线表导出到word")

接下来把out转成flextables格式

tb1<-as_flextable(xtable(out))

接下来咱们创建一个空的文档,后面可以向它写入数据

doc = read_docx()

咱们可以看到doc的路径在,这个是officer包的默认位置

在这里插入图片描述
接下来咱们把刚才的tb1添加入空的doc就可以啦

doc = body_add_flextable(doc,tb1)

最后还需对生成的doc进行打印,然后在默认的位置下就可以看到word了

print(doc,"./tb1.docx")

在这里插入图片描述
咱们打开看一下,还不是还不是很满意,删除第一列

在这里插入图片描述
这样就基本差不多啦

在这里插入图片描述
还可以按住表格根据内容自动调整,最后在修饰一下就好啦

在这里插入图片描述
将来在新版的scitb包将会添加这个一键导出到word的功能。

R语言优雅的把基线表导出到word

相关文章:

R语言优雅的把数据基线表(表一)导出到word

基线表&#xff08;Baseline Table&#xff09;是医学研究中常用的一种数据表格&#xff0c;用于在研究开始时呈现参与者的初始特征和状态。这些特征通常包括人口统计学数据、健康状况和疾病史、临床指标、实验室检测、生活方式、社会经济等。 本人在既往文章《scitb包1.6版本发…...

XMl基本操作

引言 使⽤Mybatis的注解⽅式&#xff0c;主要是来完成⼀些简单的增删改查功能. 如果需要实现复杂的SQL功能&#xff0c;建议使⽤XML来配置映射语句&#xff0c;也就是将SQL语句写在XML配置⽂件中. 之前&#xff0c;我们学习了&#xff0c;用注解的方式来实现MyBatis 接下来我们…...

Linux——Shell脚本和Nginx反向代理服务器

1. Linux中的shell脚本【了解】 1.1 什么是shell Shell是一个用C语言编写的程序&#xff0c;它是用户使用Linux的桥梁 Shell 既是一种命令语言&#xff0c;有是一种程序设计语言 Shell是指一种应用程序&#xff0c;这个应用程序提供了一个界面&#xff0c;用户通过这个界面访问…...

pyspark使用 graphframes创建和查询图的方法

1、安装graphframes的步骤 1.1 查看 spark 和 scala版本 在终端输入&#xff1a; spark-shell --version 查看spark 和scala版本 1.2 在maven库中下载对应版本的graphframes https://mvnrepository.com/artifact/graphframes/graphframes 我这里需要的是spark 2.4 scala 2.…...

【web】-flask-简单的计算题(不简单)

打开页面是这样的 初步思路&#xff0c;打开F12&#xff0c;查看头&#xff0c;都发现了这个表达式的base64加密字符串。编写脚本提交答案&#xff0c;发现不对&#xff1b; 无奈点开source发现源代码&#xff0c;是flask,初始化表达式&#xff0c;获取提交的表达式&#xff0…...

Apache Sqoop

Apache Sqoop是一个开源工具&#xff0c;用于在Apache Hadoop和关系型数据库&#xff08;如MySQL、Oracle、PostgreSQL等&#xff09;之间进行数据的批量传输。其主要功能包括&#xff1a; 1. 数据导入&#xff1a;从关系型数据库&#xff08;如MySQL、Oracle等&#xff09;中将…...

【Python】TensorFlow介绍与实战

TensorFlow介绍与使用 1. 前言 在人工智能领域的快速发展中&#xff0c;深度学习框架的选择至关重要。TensorFlow 以其灵活性和强大的社区支持&#xff0c;成为了许多研究者和开发者的首选。本文将进一步扩展对 TensorFlow 的介绍&#xff0c;包括其优势、应用场景以及在最新…...

第100+16步 ChatGPT学习:R实现Xgboost分类

基于R 4.2.2版本演示 一、写在前面 有不少大佬问做机器学习分类能不能用R语言&#xff0c;不想学Python咯。 答曰&#xff1a;可&#xff01;用GPT或者Kimi转一下就得了呗。 加上最近也没啥内容写了&#xff0c;就帮各位搬运一下吧。 二、R代码实现Xgboost分类 &#xff08…...

【操作系统】定时器(Timer)的实现

这里写目录标题 定时器一、定时器是什么二、标准库中的定时器三、实现定时器 定时器 一、定时器是什么 定时器也是软件开发中的⼀个重要组件.类似于⼀个"闹钟".达到⼀个设定的时间之后,就执行某个指定 好的代码. 定时器是⼀种实际开发中⾮常常用的组件. ⽐如⽹络通…...

鸿蒙Navigation路由能力汇总

基本使用步骤&#xff1a; 1、新增配置文件router_map&#xff1a; 2、在moudle.json5中添加刚才新增的router_map配置&#xff1a; 3、使用方法&#xff1a; 属性汇总&#xff1a; https://developer.huawei.com/consumer/cn/doc/harmonyos-references/ts-basic-compone…...

​1:1公有云能力整体输出,腾讯云“七剑”下云端

【全球云观察 &#xff5c; 科技热点关注】 曾几何时&#xff0c;云计算技术的兴起&#xff0c;为千行万业的数字化创新带来了诸多新机遇&#xff0c;同时也催生了新产业新业态新模式&#xff0c;激发出高质量发展的科技新动能。很显然&#xff0c;如今的云创新已成为高质量发…...

【iOS】APP仿写——网易云音乐

网易云音乐 启动页发现定时器控制轮播图UIButtonConfiguration 发现换头像 我的总结 启动页 这里我的启动页是使用Xcode自带的启动功能&#xff0c;将图片放置在LaunchScreen中即可。这里也可以通过定时器控制&#xff0c;来实现启动的效果 效果图&#xff1a; 这里放一篇大…...

react 快速入门思维导图

在掌握了react中一下的几个步骤和语法&#xff0c;基本上就可以熟练的使用react了。 1、组件的使用。react创建组件主要是类组件和函数式组件&#xff0c;类组件有生命周期&#xff0c;而函数式组件没有。 2、jsx语法。react主要使用jsx语法&#xff0c;需要使用babel和webpa…...

微软研究人员为电子表格应用开发了专用人工智能LLM

微软的 Copilot 生成式人工智能助手现已成为该公司许多软件应用程序的一部分。其中包括 Excel 电子表格应用程序&#xff0c;用户可以在其中输入文本提示来帮助处理某些选项。微软的一组研究人员一直在研究一种新的人工智能大型语言模型&#xff0c;这种模型是专门为 Excel、Go…...

[算法题]两个链表的第一个公共结点

题目链接: 两个链表的第一个公共结点 图示: 两个链表如果长度一致, 那么两人同时一人走一步, 如果存在公共结点, 迟早会相遇, 但是如果长度不一致单存在公共结点, 两人同时一人走一步不会相遇, 此时定义两个变量, node1 和 node2, 这两个变量分别从 x1 和 x2 开始走, 当其走完…...

MySQL事务管理(上)

目录 前言 CURD不加控制&#xff0c;会有什么问题&#xff1f; CURD满足什么属性&#xff0c;能解决上述问题&#xff1f; 事务 什么是事务&#xff1f; 为什么会出现事务 事务的版本支持 事务提交方式 查看事务提交方式 改变 MySQL 的自动提交模式: 事务常见操作方式 前…...

HTML2048小游戏

源代码在效果图后面 效果图 源代码 <!DOCTYPE html> <html lang"zh-CN"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>2048 Game&l…...

为 android编译 luajit库、 交叉编译

时间&#xff1a;20200719 本机环境&#xff1a;iMac2017 macOS11.4 参考: 官方的文档&#xff1a;Use the NDK with other build systems 写在前边&#xff1a;交叉编译跟普通编译类似&#xff0c;无非是利用特殊的编译器、链接器生成动态或静态库; make 本质上是按照 Make…...

【音视频】音频重采样

文章目录 前言音频重采样的基本概念音频重采样的原因1. 设备兼容性2. 文件大小和带宽3. 音质优化4. 标准化和规范5. 多媒体同步6. 降低处理负载重采样的注意事项 总结 前言 音频重采样是指将音频文件的采样率转换成另一种采样率的过程。这在音频处理和传输中是一个常见且重要的…...

卷积神经网络学习问题总结

问题一&#xff1a; 深度学习中的损失函数和应用场景 回归任务&#xff1a; 均方误差函数&#xff08;MSE&#xff09;适用于回归任务&#xff0c;如预测房价、预测股票价格等。 import torch.nn as nn loss_fn nn.MSELoss() 分类任务&#xff1a; 交叉熵损失函数&…...

rknn优化教程(二)

文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK&#xff0c;开始写第二篇的内容了。这篇博客主要能写一下&#xff1a; 如何给一些三方库按照xmake方式进行封装&#xff0c;供调用如何按…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端

&#x1f31f; 什么是 MCP&#xff1f; 模型控制协议 (MCP) 是一种创新的协议&#xff0c;旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议&#xff0c;它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...

UDP(Echoserver)

网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法&#xff1a;netstat [选项] 功能&#xff1a;查看网络状态 常用选项&#xff1a; n 拒绝显示别名&#…...

前端导出带有合并单元格的列表

// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...

MMaDA: Multimodal Large Diffusion Language Models

CODE &#xff1a; https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA&#xff0c;它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构&#xf…...

Robots.txt 文件

什么是robots.txt&#xff1f; robots.txt 是一个位于网站根目录下的文本文件&#xff08;如&#xff1a;https://example.com/robots.txt&#xff09;&#xff0c;它用于指导网络爬虫&#xff08;如搜索引擎的蜘蛛程序&#xff09;如何抓取该网站的内容。这个文件遵循 Robots…...

【JavaWeb】Docker项目部署

引言 之前学习了Linux操作系统的常见命令&#xff0c;在Linux上安装软件&#xff0c;以及如何在Linux上部署一个单体项目&#xff0c;大多数同学都会有相同的感受&#xff0c;那就是麻烦。 核心体现在三点&#xff1a; 命令太多了&#xff0c;记不住 软件安装包名字复杂&…...

JVM 内存结构 详解

内存结构 运行时数据区&#xff1a; Java虚拟机在运行Java程序过程中管理的内存区域。 程序计数器&#xff1a; ​ 线程私有&#xff0c;程序控制流的指示器&#xff0c;分支、循环、跳转、异常处理、线程恢复等基础功能都依赖这个计数器完成。 ​ 每个线程都有一个程序计数…...

【JVM面试篇】高频八股汇总——类加载和类加载器

目录 1. 讲一下类加载过程&#xff1f; 2. Java创建对象的过程&#xff1f; 3. 对象的生命周期&#xff1f; 4. 类加载器有哪些&#xff1f; 5. 双亲委派模型的作用&#xff08;好处&#xff09;&#xff1f; 6. 讲一下类的加载和双亲委派原则&#xff1f; 7. 双亲委派模…...

嵌入式常见 CPU 架构

架构类型架构厂商芯片厂商典型芯片特点与应用场景PICRISC (8/16 位)MicrochipMicrochipPIC16F877A、PIC18F4550简化指令集&#xff0c;单周期执行&#xff1b;低功耗、CIP 独立外设&#xff1b;用于家电、小电机控制、安防面板等嵌入式场景8051CISC (8 位)Intel&#xff08;原始…...