当前位置: 首页 > news >正文

基于python的时空地理加权回归(GTWR)模型

一、时空地理加权回归(GTWR)模型

时空地理加权回归(GTWR)模型是由美国科罗拉多州立大学的Andy Liaw、Stanley A. Fiel和Michael E. Bock于2008年提出的一种高级空间统计分析方法。它是在传统地理加权回归(GWR)模型的基础上发展起来的,通过结合时间和空间两个维度,提供了一种更为灵活和精确的时空数据分析手段。

  1. 背景和发展
    传统的地理加权回归(GWR)模型主要关注地理空间上的数据变化,通过引入地理位置的权重,来刻画不同地理位置下变量之间的关系。然而,随着时间维度在数据分析中的重要性逐渐凸显,仅依赖空间维度的GWR模型显然不足以应对复杂的时空数据。因此,Andy Liaw、Stanley A. Fiel和Michael E. Bock三位学者提出了GTWR模型,将时间和空间两个维度结合起来,使得模型能够同时考虑地理位置和时间的影响。

  2. 基本原理
    GTWR模型的核心思想是将时间和空间作为权重函数的输入,通过动态调整权重,来反映时空数据中不同位置和不同时刻的变化。具体而言,GTWR模型在进行回归分析时,不仅考虑观测点的地理距离,还考虑观测点的时间距离。这样,模型在估计参数时能够更加准确地反映出时空数据的局部特征。

  3. 模型优势
    更高的精确度:GTWR模型通过结合时间和空间两个维度,能够更精确地捕捉数据中的时空异质性,提供更为准确的回归结果。
    动态权重调整:与传统GWR模型不同,GTWR模型能够动态调整权重函数,使得模型在不同时空下的表现更为灵活和贴合实际。
    广泛的应用场景:GTWR模型适用于各类时空数据分析,如环境科学、城市规划、流行病学等领域,能够帮助研究人员更好地理解和预测时空数据的变化。

  4. 应用实例

例如,在环境科学中,GTWR模型可以用于分析空气污染数据,评估不同时空下污染物浓度与气象条件、交通流量等变量之间的关系。通过GTWR模型,研究人员能够识别出污染源的时空分布特征,为制定污染控制策略提供科学依据。

二、多尺度时空地理加权回归(MGTWR)模型

MGTWR模型在GWR和GTWR的基础上进一步引入多尺度概念,允许模型参数在不同的空间和时间尺度上变化。这样可以更精确地捕捉和分析空间和时间异质性对现象的影响。MGTWR模型通过构建独立的空间和时间权重函数,使得不同解释变量在不同的空间和时间尺度上产生不同的影响。
特点:
尺度差异化:MGTWR模型允许不同解释变量具有不同的空间和时间尺度效应,在不同的地理邻域大小或时间段内对因变量产生不同程度的影响。
局部参数估计:MGTWR模型在每个观测点处进行局部回归参数的估计,不仅考虑了地理位置的变化,还包含了时间维度以及各变量所对应的特定空间和时间尺度。
多尺度权重函数:对于每个解释变量,MGTWR模型构建了独立的空间和时间权重函数,从而提供更精确、更具针对性的分析结果。
实例应用:
在社会经济研究中,MGTWR模型可用于分析房价数据,评估不同时空下经济因素、地理位置、交通便利性等变量对房价的影响。通过MGTWR模型,研究人员能够揭示出不同因素在不同时空尺度上的影响力,为制定政策提供科学依据。

联系和区别
GTWR模型结合时间和空间两个维度,通过引入时间和空间权重函数,动态调整模型参数,以反映不同时空点的数据变化。该模型能够在每个观测点处根据其时间和地理位置来估计回归参数。通过考虑时间和空间两个维度的权重,GTWR能够更准确地捕捉数据中的时空异质性,适应不同时空范围内数据的变化。能够捕捉数据中的时空变化和异质性。适用于时间和空间变化较为显著的研究场景。
MGTWR模型引入多尺度概念,允许不同解释变量在不同的空间和时间尺度上变化。这意味着MGTWR不仅考虑了时空异质性,还允许每个解释变量在不同尺度下对因变量产生不同的影响。对于每个解释变量,MGTWR构建了独立的空间和时间权重函数,从而提供更精确、更具针对性的分析结果。
允许不同解释变量在不同的空间和时间尺度上产生不同的效应。更精确地捕捉和分析空间和时间异质性对现象的影响。适用于具有多尺度特性的复杂数据分析。

三、选择使用GTWR还是MGTWR

使用GTWR模型:

当研究数据的空间和时间变化较为显著,且不需要考虑多尺度效应时,GTWR模型是一个合适的选择。
例如,在研究空气污染的时空变化时,GTWR模型能够捕捉不同时间和地点的污染物浓度变化。

使用MGTWR模型:

当研究数据中存在多尺度效应,即不同解释变量在不同的空间和时间尺度上产生不同的影响时,MGTWR模型更为适用。
例如,在研究社会经济现象(如房价、失业率等)时,不同变量(如收入水平、教育程度、地理位置)可能在不同的时间和空间尺度上对结果产生不同的影响,这时MGTWR模型能够提供更精确的分析。

代码

!pip install mgtwr
import pandas as pd
import geopandas as gpd
import matplotlib.pyplot as plt
import numpy as np
from mgtwr.model import GTWR, MGTWR,GTWRResults
from mgtwr.sel import SearchGTWRParameter
from mgtwr.model import GTWR
#GTWR
data = pd.read_csv(r'/home/mw/input/1232464/example.csv')
coords = data[['longitude', 'latitude']]
t = data[['t']]
X = data[['x1', 'x2']]#自变量
y = data[['y']]#因变量
##SearchGTWRParameter:用于搜索 GTWR 模型的最佳参数。
##coords, t, X, y:分别是空间位置、时间变量、自变量和因变量。
##kernel='gaussian':使用高斯核函数。
##fixed=True:使用固定带宽。
##tau_max=20:搜索的最大时间延迟。
##verbose=True:显示搜索过程的详细信息。
##time_cost=True:显示搜索所需时间。
##GTWR:创建 GTWR 模型实例。
##fit():拟合模型。
##gtwr.R2:输出模型的判定系数 R2R2,表示模型的解释力。
##sel = SearchGTWRParameter(coords, t, X, y, kernel='gaussian', ##fixed=True)
bw, tau = sel.search(tau_max=20, verbose=True, time_cost=True)
gtwr = GTWR(coords, t, X, y, bw, tau, kernel='gaussian', fixed=True).fit()
print(gtwr.R2)#MGTWR
from mgtwr.sel import SearchMGTWRParameter
from mgtwr.model import MGTWR
sel_multi = SearchMGTWRParameter(coords, t, X, y, kernel='gaussian', fixed=True)
bws = sel_multi.search(multi_bw_min=[0.1], verbose=True, tol_multi=1.0e-4, time_cost=True)
mgtwr = MGTWR(coords, t, X, y, sel_multi, kernel='gaussian', fixed=True).fit()
print(mgtwr.R2)
#SearchMGTWRParameter:用于搜索 MGTWR 模型的多尺度最佳参数。
#multi_bw_min=[0.1]:最小带宽。
#tol_multi=1.0e-4:多尺度带宽搜索的容差。
#其他参数与 GTWR 的搜索参数相同。

相关文章:

基于python的时空地理加权回归(GTWR)模型

一、时空地理加权回归(GTWR)模型 时空地理加权回归(GTWR)模型是由美国科罗拉多州立大学的Andy Liaw、Stanley A. Fiel和Michael E. Bock于2008年提出的一种高级空间统计分析方法。它是在传统地理加权回归(GWR&#xf…...

什么是单例模式,有哪些应用?

目录 一、定义 二、应用场景 三、6种实现方式 1、懒汉式,线程不安全。 2、懒汉式,线程安全 3、双检锁/双重校验锁(DCL,即 double-checked locking) 4、静态内部类方式-------只适用于静态域 5、饿汉式 6、枚举…...

adb命令操作手机各种开关

打开iqoo手机热点设置 adb shell am start -n com.android.settings/com.android.settings.Settings$\VivoTetherSettingsActivity蓝牙模块 检查蓝牙状态的ADB命令 检查蓝牙开关状态 adb shell settings get global bluetooth_on开启和关闭蓝牙 使用Intent操作蓝牙&#xf…...

【分布式存储系统HDFS】架构和使用

分布式存储系统HDFS:架构和使用 目录 引言HDFS简介HDFS的架构 NameNodeDataNodeSecondary NameNode HDFS的工作原理 数据读写流程数据冗余与恢复 HDFS的安装和配置 环境准备HDFS安装步骤HDFS配置文件启动HDFS HDFS的使用 基本命令HDFS Shell操作Java API操作 HDFS…...

Linux 实验一Linux系统安装

一、实验日期与地址 1、实验日期:2024年 2 月28 日 2、实验地址:S1-504 二、实验目的 1、掌握VMware Workstation建立虚拟机 2、掌握虚拟机环境下安装Centos 7 三、实验环境 VMware Workstation、Centos 7 四、实验内容 1、安装VMware Workstat…...

【人工智能】深度剖析AI伦理:强化隐私防线,推动算法公平性的核心议题

文章目录 🍊1 人工智能兴起背后的伦理及道德风险1.1 算法偏见与歧视1.2 数据隐私侵权1.3 透明度受限1.4 决策失衡1.5 AI生成内容的危险性 🍊2 建构AIGC伦理观:实现人机共创的永续提升2.1 技术手段与伦理预防2.2 即时警告与紧急关停措施2.3 法…...

如何解决微服务下引起的 分布式事务问题

一、什么是分布式事务? 虽然叫分布式事务,但不是一定是分布式部署的服务之间才会产生分布式事务。不是在同一个服务或同一个数据库架构下,产生的事务,也就是分布式事务。 跨数据源的分布式事务 跨服务的分布式事务 二、解决方…...

牛客周赛50轮+cf955+abc363

D-小红的因式分解_牛客周赛 Round 50 (nowcoder.com) 思路: 巨蠢的题目,ax^2bxca1*a2*x^2(b1*a2b2*a1)xb1*b2,即: aa1*a2,ba1*b2a2*b1,cb1*b2 数据范围很小,直接暴力枚举吧(注意条件) 代码…...

【MySQL】:对库和表的基本操作方法

数据库使用的介绍 什么是SQL 学习数据库的使用——>基于 SQL编程语言 来对数据库进行操作 重点表述的是“需求”,期望得到什么结果。(至于结果是如何得到的,并不关键,都是数据库服务器在背后做好了) 重点表述的是…...

Library not found for -lstdc++.6.0.9

解决方案一 由于项目已经很多年了,前段时间更新了Xcode发现编译报错lstdc这个库很早以前就被舍弃了,但是一个项目的维护都随着解决bug堆砌出来的,这也导致了我们的项目走上了这条路。 比如 Library not found for -lstdc.6.0.9 报的错&#x…...

防火墙之双机热备篇

为什么要在防火墙上配置双机热备技术呢? 相信大家都知道,为了提高可靠性,避免单点故障 肯定有聪明的小伙伴会想到那为什么不直接多配置两台防火墙,然后再将他们进行线路冗余,不就完成备份了吗? 答案是不…...

终端里面ifconfig命令无法运行

在 Ubuntu 以及基于 Debian 的系统中,ifconfig 命令可能不会默认安装,因为自 Ubuntu 17.10 版本开始,系统默认使用 ip 命令作为网络配置的主要工具,而 ifconfig 命令则来自 net-tools 包,该包不再作为标准工具被包含在…...

掌握Python中的文件序列化:Json和Pickle模块解析

Python 文件操作与管理:Open函数、Json与Pickle、Os模块 在Python中,文件是一个重要的数据处理对象。无论是读取数据、保存数据还是进行数据处理,文件操作都是Python编程中不可或缺的一部分。本文将详细介绍Python中文件操作的几种常用方法&…...

WordPress 6.6 “Dorsey多尔西”发布

WordPress 6.6 “Dorsey多尔西”已经发布,它以传奇的美国大乐队领袖 Tommy Dorsey 名字命名。Dorsey 以其音调流畅的长号和作品而闻名,他的音乐以其情感深度和充满活力的能量吸引了观众。 当您探索 WordPress 6.6 的新功能和增强功能时,让您的…...

核函数支持向量机(Kernel SVM)

核函数支持向量机(Kernel SVM)是一种非常强大的分类器,能够在非线性数据集上实现良好的分类效果。以下是关于核函数支持向量机的详细数学模型理论知识推导、实施步骤与参数解读,以及两个多维数据实例(一个未优化模型&a…...

二分查找(折半查找)

这次不排序了,对排好序的数组做个查找吧 介绍 二分查找排序英文名为BinarySort,是一种效率较高的查找方法要求线性表必须采用顺序存储结构 基本思路 通过不断地将搜索范围缩小一半来找到目标元素: 1、假定数组为arr,需要查找的…...

arcgis紧凑型切片缓存(解决大范围切片,文件数量大的问题)

ArcGIS 切片缓存的紧凑型存储格式是一种优化的存储方式,用于提高切片缓存的存储效率和访问速度。紧凑型存储格式将多个切片文件合并为一个单一的 .bundle 文件,从而减少文件系统的开销和切片的加载时间。这类格式已经应用很久了,我记得2013我…...

ESP32CAM人工智能教学15

ESP32CAM人工智能教学15 Flask服务器TCP连接 小智利用Flask在计算机中创建一个虚拟的网页服务器服务器,让ESP32Cam通过WiFi连接,把摄像头拍摄到的图片发送到电脑中,并在电脑中保存成图片文件。 Flask是用Python编写的网页服务程序WebServer。…...

Pandas 33个冷知识 0721

Pandas 33个冷知识 从Excel读取数据: 使用 pd.read_excel(file.xlsx) 来读取Excel文件。 写入Excel: 使用 df.to_excel(file.xlsx, indexFalse) 将DataFrame写入Excel文件。 创建日期索引: 使用 df.set_index(pd.to_datetime(df[date])) 创建日期索引。 向后填充缺失值: 使用…...

C++ map和set的使用

目录 0.前言 1.关联式容器 2.键值对 3.树形结构的关联式容器 3.1树形结构的特点 3.2树形结构在关联式容器中的应用 4.set 4.1概念与性质 4.2使用 5.multiset 5.1概念与性质 5.2使用 6.map 6.1概念与性质 6.2使用 7.multimap 7.1概念与性质 7.2使用 8.小结 &a…...

日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻

在如今就业市场竞争日益激烈的背景下,越来越多的求职者将目光投向了日本及中日双语岗位。但是,一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧?面对生疏的日语交流环境,即便提前恶补了…...

CMake基础:构建流程详解

目录 1.CMake构建过程的基本流程 2.CMake构建的具体步骤 2.1.创建构建目录 2.2.使用 CMake 生成构建文件 2.3.编译和构建 2.4.清理构建文件 2.5.重新配置和构建 3.跨平台构建示例 4.工具链与交叉编译 5.CMake构建后的项目结构解析 5.1.CMake构建后的目录结构 5.2.构…...

【机器视觉】单目测距——运动结构恢复

ps:图是随便找的,为了凑个封面 前言 在前面对光流法进行进一步改进,希望将2D光流推广至3D场景流时,发现2D转3D过程中存在尺度歧义问题,需要补全摄像头拍摄图像中缺失的深度信息,否则解空间不收敛&#xf…...

django filter 统计数量 按属性去重

在Django中,如果你想要根据某个属性对查询集进行去重并统计数量,你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求: 方法1:使用annotate()和Count 假设你有一个模型Item,并且你想…...

Module Federation 和 Native Federation 的比较

前言 Module Federation 是 Webpack 5 引入的微前端架构方案,允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...

Map相关知识

数据结构 二叉树 二叉树,顾名思义,每个节点最多有两个“叉”,也就是两个子节点,分别是左子 节点和右子节点。不过,二叉树并不要求每个节点都有两个子节点,有的节点只 有左子节点,有的节点只有…...

Java + Spring Boot + Mybatis 实现批量插入

在 Java 中使用 Spring Boot 和 MyBatis 实现批量插入可以通过以下步骤完成。这里提供两种常用方法&#xff1a;使用 MyBatis 的 <foreach> 标签和批处理模式&#xff08;ExecutorType.BATCH&#xff09;。 方法一&#xff1a;使用 XML 的 <foreach> 标签&#xff…...

JVM 内存结构 详解

内存结构 运行时数据区&#xff1a; Java虚拟机在运行Java程序过程中管理的内存区域。 程序计数器&#xff1a; ​ 线程私有&#xff0c;程序控制流的指示器&#xff0c;分支、循环、跳转、异常处理、线程恢复等基础功能都依赖这个计数器完成。 ​ 每个线程都有一个程序计数…...

Ubuntu系统复制(U盘-电脑硬盘)

所需环境 电脑自带硬盘&#xff1a;1块 (1T) U盘1&#xff1a;Ubuntu系统引导盘&#xff08;用于“U盘2”复制到“电脑自带硬盘”&#xff09; U盘2&#xff1a;Ubuntu系统盘&#xff08;1T&#xff0c;用于被复制&#xff09; &#xff01;&#xff01;&#xff01;建议“电脑…...

深度剖析 DeepSeek 开源模型部署与应用:策略、权衡与未来走向

在人工智能技术呈指数级发展的当下&#xff0c;大模型已然成为推动各行业变革的核心驱动力。DeepSeek 开源模型以其卓越的性能和灵活的开源特性&#xff0c;吸引了众多企业与开发者的目光。如何高效且合理地部署与运用 DeepSeek 模型&#xff0c;成为释放其巨大潜力的关键所在&…...