当前位置: 首页 > news >正文

核函数支持向量机(Kernel SVM)

核函数支持向量机(Kernel SVM)是一种非常强大的分类器,能够在非线性数据集上实现良好的分类效果。以下是关于核函数支持向量机的详细数学模型理论知识推导、实施步骤与参数解读,以及两个多维数据实例(一个未优化模型,一个优化后的模型)的完整分析。

一、数学模型理论推导

1.1 线性支持向量机

支持向量机的目标是找到一个超平面,以最大化两类数据点之间的间隔。对于线性可分的数据,支持向量机的目标可以用以下优化问题来表示:

97557112f56d4fae8901e76e7622d405.png

1.2 非线性支持向量机

029dde8d27b442f5b21522f73a1115c3.png

11a83a5da5c840cdaa5288fd815017f4.png

二、实施步骤与参数解读

2.1 选择核函数

常用的核函数有:

26b46bb2114a44949ac166b9f725d6f2.png

2.2 参数选择

  • C:控制分类错误与间隔的权衡。值越大,分类错误越少,但间隔越小,容易过拟合。
  • eq?%5Cgamma:控制RBF核的宽度。值越大,高斯分布越窄,模型复杂度越高,容易过拟合。

三、多维数据实例

import numpy as np
import matplotlib.pyplot as plt
from sklearn.svm import SVC
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report# 生成数据
X, y = make_classification(n_samples=300, n_features=2, n_informative=2, n_redundant=0, n_clusters_per_class=1, random_state=42)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)# 未优化的核函数SVM模型
model = SVC(kernel='rbf', C=1.0, gamma='scale')
model.fit(X_train, y_train)# 预测与结果分析
y_pred = model.predict(X_test)
print("未优化模型分类报告:")
print(classification_report(y_test, y_pred))# 可视化结果
plt.figure(figsize=(10, 6))
plt.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap='coolwarm', s=30, edgecolors='k')
plt.title("未优化的核函数SVM分类结果", fontname='KaiTi')
plt.show()
# 优化后的核函数SVM模型
model_optimized = SVC(kernel='rbf', C=10.0, gamma=0.1)
model_optimized.fit(X_train, y_train)# 预测与结果分析
y_pred_optimized = model_optimized.predict(X_test)
print("优化后模型分类报告:")
print(classification_report(y_test, y_pred_optimized))# 可视化结果
plt.figure(figsize=(10, 6))
plt.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap='coolwarm', s=30, edgecolors='k')
plt.title("优化后的核函数SVM分类结果", fontname='KaiTi')
plt.show()

c8b6cff8d61e4d429e6b5d4e01ebb838.png

9b04a72b54e241a2a4983fc3b0b6bebb.png

7e9112b974f846c196bf2798503465a0.png

四、结果与结果解释

4.1 未优化模型

  • 分类报告显示了精度、召回率和F1分数等指标。
  • 可视化图展示了未优化模型的分类边界和测试集数据点。

4.2 优化后的模型

  • 优化后模型的分类报告通常会显示更高的精度、召回率和F1分数,表明模型性能提升。
  • 优化后的可视化图展示了改进后的分类边界,更好地分隔了数据点。

 

 

 

相关文章:

核函数支持向量机(Kernel SVM)

核函数支持向量机(Kernel SVM)是一种非常强大的分类器,能够在非线性数据集上实现良好的分类效果。以下是关于核函数支持向量机的详细数学模型理论知识推导、实施步骤与参数解读,以及两个多维数据实例(一个未优化模型&a…...

二分查找(折半查找)

这次不排序了,对排好序的数组做个查找吧 介绍 二分查找排序英文名为BinarySort,是一种效率较高的查找方法要求线性表必须采用顺序存储结构 基本思路 通过不断地将搜索范围缩小一半来找到目标元素: 1、假定数组为arr,需要查找的…...

arcgis紧凑型切片缓存(解决大范围切片,文件数量大的问题)

ArcGIS 切片缓存的紧凑型存储格式是一种优化的存储方式,用于提高切片缓存的存储效率和访问速度。紧凑型存储格式将多个切片文件合并为一个单一的 .bundle 文件,从而减少文件系统的开销和切片的加载时间。这类格式已经应用很久了,我记得2013我…...

ESP32CAM人工智能教学15

ESP32CAM人工智能教学15 Flask服务器TCP连接 小智利用Flask在计算机中创建一个虚拟的网页服务器服务器,让ESP32Cam通过WiFi连接,把摄像头拍摄到的图片发送到电脑中,并在电脑中保存成图片文件。 Flask是用Python编写的网页服务程序WebServer。…...

Pandas 33个冷知识 0721

Pandas 33个冷知识 从Excel读取数据: 使用 pd.read_excel(file.xlsx) 来读取Excel文件。 写入Excel: 使用 df.to_excel(file.xlsx, indexFalse) 将DataFrame写入Excel文件。 创建日期索引: 使用 df.set_index(pd.to_datetime(df[date])) 创建日期索引。 向后填充缺失值: 使用…...

C++ map和set的使用

目录 0.前言 1.关联式容器 2.键值对 3.树形结构的关联式容器 3.1树形结构的特点 3.2树形结构在关联式容器中的应用 4.set 4.1概念与性质 4.2使用 5.multiset 5.1概念与性质 5.2使用 6.map 6.1概念与性质 6.2使用 7.multimap 7.1概念与性质 7.2使用 8.小结 &a…...

yarn的安装和配置以及更新总结,npm的对照使用差异

1. Yarn简介 Yarn 是一个由 Facebook 开发的现代 JavaScript 包管理器,旨在提供更快、更安全、更可靠的包管理体验。 1.1 什么是Yarn Yarn 是一个快速、可靠和安全的 JavaScript 包管理器,它通过并行化操作和智能缓存机制,显著提升了依赖安…...

【Git命令】git rebase之合并提交记录

使用场景 在本地提交了两个commit,但是发现根本没有没必要分为两次,需要想办法把两次提交合并成一个提交;这个时候可以使用如下命令启动交互式变基会话: git rebase -i HEAD~N这里 N 是你想要重新调整的最近的提交数。 如下在本地…...

为什么品牌需要做 IP 形象?

品牌做IP形象的原因有多方面,这些原因共同构成了IP形象在品牌建设中的重要性和价值,主要原因有以下几个方面: 增强品牌识别度与记忆点: IP形象作为品牌的视觉符号,具有独特性和辨识性,能够在消费者心中留…...

Kubernetes 1.24 版弃用 Dockershim 后如何迁移到 containerd 和 CRI-O

在本系列的上一篇文章中,我们讨论了什么是 CRI 和 OCI,Docker、containerd、CRI-O 之间的区别以及它们的架构等。最近,我们得知 Docker 即将从 kubernetes 中弃用!(查看 kubernetes 官方的这篇文章)那么让我…...

70. 爬楼梯【 力扣(LeetCode) 】

一、题目描述 假设你正在爬楼梯。需要 n 阶你才能到达楼顶。 每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢? 二、测试用例 示例 1: 输入:n 2 输出:2 解释:有两种方法可以爬到楼顶。 1. 1 阶…...

R语言优雅的把数据基线表(表一)导出到word

基线表(Baseline Table)是医学研究中常用的一种数据表格,用于在研究开始时呈现参与者的初始特征和状态。这些特征通常包括人口统计学数据、健康状况和疾病史、临床指标、实验室检测、生活方式、社会经济等。 本人在既往文章《scitb包1.6版本发…...

XMl基本操作

引言 使⽤Mybatis的注解⽅式,主要是来完成⼀些简单的增删改查功能. 如果需要实现复杂的SQL功能,建议使⽤XML来配置映射语句,也就是将SQL语句写在XML配置⽂件中. 之前,我们学习了,用注解的方式来实现MyBatis 接下来我们…...

Linux——Shell脚本和Nginx反向代理服务器

1. Linux中的shell脚本【了解】 1.1 什么是shell Shell是一个用C语言编写的程序,它是用户使用Linux的桥梁 Shell 既是一种命令语言,有是一种程序设计语言 Shell是指一种应用程序,这个应用程序提供了一个界面,用户通过这个界面访问…...

pyspark使用 graphframes创建和查询图的方法

1、安装graphframes的步骤 1.1 查看 spark 和 scala版本 在终端输入: spark-shell --version 查看spark 和scala版本 1.2 在maven库中下载对应版本的graphframes https://mvnrepository.com/artifact/graphframes/graphframes 我这里需要的是spark 2.4 scala 2.…...

【web】-flask-简单的计算题(不简单)

打开页面是这样的 初步思路,打开F12,查看头,都发现了这个表达式的base64加密字符串。编写脚本提交答案,发现不对; 无奈点开source发现源代码,是flask,初始化表达式,获取提交的表达式&#xff0…...

Apache Sqoop

Apache Sqoop是一个开源工具,用于在Apache Hadoop和关系型数据库(如MySQL、Oracle、PostgreSQL等)之间进行数据的批量传输。其主要功能包括: 1. 数据导入:从关系型数据库(如MySQL、Oracle等)中将…...

【Python】TensorFlow介绍与实战

TensorFlow介绍与使用 1. 前言 在人工智能领域的快速发展中,深度学习框架的选择至关重要。TensorFlow 以其灵活性和强大的社区支持,成为了许多研究者和开发者的首选。本文将进一步扩展对 TensorFlow 的介绍,包括其优势、应用场景以及在最新…...

第100+16步 ChatGPT学习:R实现Xgboost分类

基于R 4.2.2版本演示 一、写在前面 有不少大佬问做机器学习分类能不能用R语言,不想学Python咯。 答曰:可!用GPT或者Kimi转一下就得了呗。 加上最近也没啥内容写了,就帮各位搬运一下吧。 二、R代码实现Xgboost分类 &#xff08…...

【操作系统】定时器(Timer)的实现

这里写目录标题 定时器一、定时器是什么二、标准库中的定时器三、实现定时器 定时器 一、定时器是什么 定时器也是软件开发中的⼀个重要组件.类似于⼀个"闹钟".达到⼀个设定的时间之后,就执行某个指定 好的代码. 定时器是⼀种实际开发中⾮常常用的组件. ⽐如⽹络通…...

鸿蒙Navigation路由能力汇总

基本使用步骤: 1、新增配置文件router_map: 2、在moudle.json5中添加刚才新增的router_map配置: 3、使用方法: 属性汇总: https://developer.huawei.com/consumer/cn/doc/harmonyos-references/ts-basic-compone…...

​1:1公有云能力整体输出,腾讯云“七剑”下云端

【全球云观察 | 科技热点关注】 曾几何时,云计算技术的兴起,为千行万业的数字化创新带来了诸多新机遇,同时也催生了新产业新业态新模式,激发出高质量发展的科技新动能。很显然,如今的云创新已成为高质量发…...

【iOS】APP仿写——网易云音乐

网易云音乐 启动页发现定时器控制轮播图UIButtonConfiguration 发现换头像 我的总结 启动页 这里我的启动页是使用Xcode自带的启动功能,将图片放置在LaunchScreen中即可。这里也可以通过定时器控制,来实现启动的效果 效果图: 这里放一篇大…...

react 快速入门思维导图

在掌握了react中一下的几个步骤和语法,基本上就可以熟练的使用react了。 1、组件的使用。react创建组件主要是类组件和函数式组件,类组件有生命周期,而函数式组件没有。 2、jsx语法。react主要使用jsx语法,需要使用babel和webpa…...

微软研究人员为电子表格应用开发了专用人工智能LLM

微软的 Copilot 生成式人工智能助手现已成为该公司许多软件应用程序的一部分。其中包括 Excel 电子表格应用程序,用户可以在其中输入文本提示来帮助处理某些选项。微软的一组研究人员一直在研究一种新的人工智能大型语言模型,这种模型是专门为 Excel、Go…...

[算法题]两个链表的第一个公共结点

题目链接: 两个链表的第一个公共结点 图示: 两个链表如果长度一致, 那么两人同时一人走一步, 如果存在公共结点, 迟早会相遇, 但是如果长度不一致单存在公共结点, 两人同时一人走一步不会相遇, 此时定义两个变量, node1 和 node2, 这两个变量分别从 x1 和 x2 开始走, 当其走完…...

MySQL事务管理(上)

目录 前言 CURD不加控制,会有什么问题? CURD满足什么属性,能解决上述问题? 事务 什么是事务? 为什么会出现事务 事务的版本支持 事务提交方式 查看事务提交方式 改变 MySQL 的自动提交模式: 事务常见操作方式 前…...

HTML2048小游戏

源代码在效果图后面 效果图 源代码 <!DOCTYPE html> <html lang"zh-CN"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>2048 Game&l…...

为 android编译 luajit库、 交叉编译

时间&#xff1a;20200719 本机环境&#xff1a;iMac2017 macOS11.4 参考: 官方的文档&#xff1a;Use the NDK with other build systems 写在前边&#xff1a;交叉编译跟普通编译类似&#xff0c;无非是利用特殊的编译器、链接器生成动态或静态库; make 本质上是按照 Make…...

【音视频】音频重采样

文章目录 前言音频重采样的基本概念音频重采样的原因1. 设备兼容性2. 文件大小和带宽3. 音质优化4. 标准化和规范5. 多媒体同步6. 降低处理负载重采样的注意事项 总结 前言 音频重采样是指将音频文件的采样率转换成另一种采样率的过程。这在音频处理和传输中是一个常见且重要的…...

凡科建站官网登录入口网页版/百度seo排名优化系统

根据《武汉大学学生出国&#xff08;境&#xff09;交流学习专项奖学金管理暂行办法》&#xff08;武大外字[2017]35号&#xff09;和《武汉大学弘毅学堂学生出国&#xff08;境&#xff09;交流学习资助实施办法&#xff08;2019修订版&#xff09;》文件精神的有关要求&#…...

石桥铺网站建设公司/seo的内容怎么优化

什么是 Istio作为服务网格的实现产品&#xff0c;Istio 一经推出就备受瞩目&#xff0c;成为各大厂商和开发者争相追逐的 “香馍馍”。我个人认为 Istio 会成为继 Kubernetes 之后的又一个明星级产品。Istio 的官方网站这样定义自己的&#xff1a;它是一个完全开源的服务网格&a…...

做网站快速排名/网络营销中的seo是指

#include<stdio.h> #include<string.h> int main() {char a[1005];int b,c,z1;gets(a);bstrlen(a);for(c0;c<b;c){if(a[c]a[c1]){z;}else{printf("%d%c",z,a[c]);z1;}}}...

摄像网站建设/广告收益平台

http://www.microsoft.com/china/msdn/events/featureevents/2004/SmartClientSeminar/index.aspx都是有视频的&#xff01;可惜说话不是很普通话&#xff01;转载于:https://www.cnblogs.com/LearnSap/archive/2004/12/02/71876.html...

网站建设服务器篇/教育培训班

String的hashcode()方法 public int hashCode() {int h hash;if (h 0 && value.length > 0) {char val[] value;for (int i 0; i < value.length; i) {h 31 * h val[i];}hash h;}return h;}​ 选择31是因为可以用移位和减法运算来代替乘法&#xff0c;从而…...

做网站 人工智能/网络培训机构

一、准备工作 &#xff08;只做一次准备工作&#xff0c;以后都会很方便&#xff09; 1. 安装pip &#xff08;1&#xff09;下载pip到D:\download pip下载地址&#xff1a;https://pypi.python.org/pypi/pip#downloads &#xff08;2&#xff09;下载后解压到当前目录&#xf…...