当前位置: 首页 > news >正文

letcode 4.寻找两个正序数组的中位数(官方题解笔记)

题目描述

给定两个大小分别为 mn 的正序(从小到大)数组 nums1nums2。请你找出并返回这两个正序数组的 中位数

算法的时间复杂度应该为 O(log (m+n))

1.二分查找

1.1思路

时间复杂度:O(log(m+n))
空间复杂度:O(1)

给定两个有序数组,要求找到两个有序数组的中位数,最直观的思路有以下两种:

(1)使用归并的方式,合并两个有序数组,得到一个大的有序数组。大的有序数组的中间位置的元素,即为中位数。
(2)不需要合并两个有序数组,只要找到中位数的位置即可。由于两个数组的长度已知,因此中位数对应的两个数组的下标之和也是已知的。维护两个指针,初始时分别指向两个数组的下标 0 的位置,每次将指向较小值的指针后移一位(如果一个指针已经到达数组末尾,则只需要移动另一个数组的指针),直到到达中位数的位置。

假设两个有序数组的长度分别为 mn,上述两种思路的复杂度如何?

第一种思路的时间复杂度是 O(m+n),空间复杂度是 O(m+n)。第二种思路虽然可以将空间复杂度降到 O(1),但是时间复杂度仍是 O(m+n)

如何把时间复杂度降低到 O(log(m+n)) 呢?如果对时间复杂度的要求有 log,通常都需要用到二分查找,这道题也可以通过二分查找实现。

根据中位数的定义,当 m+n 是奇数时,中位数是两个有序数组中的第 (m+n)/2 个元素,当 m+n 是偶数时,中位数是两个有序数组中的第 (m+n)/2 个元素和第 (m+n)/2+1 个元素的平均值。因此,这道题可以转化成寻找两个有序数组中的第 k 小的数,其中 k(m+n)/2(m+n)/2+1

假设两个有序数组分别是 AB。要找到第 k 个元素,我们可以比较 A[k/2−1]B[k/2−1],其中 / 表示整数除法。由于 A[k/2−1]B[k/2−1] 的前面分别有 A[0..k/2−2]B[0..k/2−2],即 k/2−1 个元素,对于 A[k/2−1]B[k/2−1] 中的较小值,最多只会有 (k/2−1)+(k/2−1)≤k−2 个元素比它小,那么它就不能是第 k 小的数了。

因此我们可以归纳出三种情况:

(1)如果 A[k/2−1]<B[k/2−1],则比 A[k/2−1] 小的数最多只有 A 的前 k/2−1 个数和 B 的前 k/2−1 个数,即比 A[k/2−1] 小的数最多只有 k−2 个,因此 A[k/2−1] 不可能是第 k 个数,A[0]A[k/2−1] 也都不可能是第 k 个数,可以全部排除。
(2)如果 A[k/2−1]>B[k/2−1],则可以排除 B[0]B[k/2−1]
(3)如果 A[k/2−1]=B[k/2−1],则可以归入第一种情况处理。

letcode 原图

可以看到,比较 A[k/2−1]B[k/2−1] 之后,可以排除 k/2 个不可能是第 k 小的数,查找范围缩小了一半。同时,我们将在排除后的新数组上继续进行二分查找,并且根据我们排除数的个数,减少 k 的值,这是因为我们排除的数都不大于第 k 小的数。

有以下三种情况需要特殊处理:

(1)如果 A[k/2−1] 或者 B[k/2−1] 越界,那么我们可以选取对应数组中的最后一个元素。在这种情况下,我们必须根据排除数的个数减少 k 的值,而不能直接将 k 减去 k/2
(2)如果一个数组为空,说明该数组中的所有元素都被排除,我们可以直接返回另一个数组中第 k 小的元素。
(3)如果 k=1,我们只要返回两个数组首元素的最小值即可。

1.一个例子

用一个例子说明上述算法。假设两个有序数组如下:

A: 1 3 4 9
B: 1 2 3 4 5 6 7 8 9

两个有序数组的长度分别是 49,长度之和是 13,中位数是两个有序数组中的第 7 个元素,因此需要找到第 k=7 个元素。

比较两个有序数组中下标为 k/2−1=2 的数,即 A[2]B[2],如下面所示:

A: 1 3 4 9↑
B: 1 2 3 4 5 6 7 8 9↑

由于 A[2]>B[2],因此排除 B[0]B[2],即数组 B 的下标偏移 offset 变为 3,同时更新 k 的值:k=k−k/2=4

下一步寻找,比较两个有序数组中下标为 k/2−1=1 的数,即 A[1]B[4],如下面所示,其中方括号部分表示已经被排除的数。

A: 1 3 4 9↑
B: [1 2 3] 4 5 6 7 8 9↑

由于 A[1]<B[4],因此排除 A[0]A[1],即数组 A 的下标偏移变为 2,同时更新 k 的值:k=k−k/2=2

下一步寻找,比较两个有序数组中下标为 k/2−1=0 的数,即比较 A[2]B[3],如下面所示,其中方括号部分表示已经被排除的数。

A: [1 3] 4 9↑
B: [1 2 3] 4 5 6 7 8 9↑

由于 A[2]=B[3],根据之前的规则,排除 A 中的元素,因此排除 A[2],即数组 A 的下标偏移变为 3,同时更新 k 的值: k=k−k/2=1

由于 k 的值变成 1,因此比较两个有序数组中的未排除下标范围内的第一个数,其中较小的数即为第 k 个数,由于 A[3]>B[3],因此第 k 个数是 B[3]=4

A: [1 3 4] 9↑
B: [1 2 3] 4 5 6 7 8 9↑

1.2代码

1.C++

class Solution {
public:// 此函数作用:寻找两有序数组 nums1 和 nums2 中第 k 小的数并返回该数int getKthElement(const vector<int>& nums1, const vector<int>& nums2, int k) {/* 主要思路:要找到第 k (k>1) 小的元素,那么就取 pivot1 = nums1[k/2-1] 和 pivot2 = nums2[k/2-1] 进行比较* 这里的 "/" 表示整除* nums1 中小于等于 pivot1 的元素有 nums1[0 .. k/2-2] 共计 k/2-1 个* nums2 中小于等于 pivot2 的元素有 nums2[0 .. k/2-2] 共计 k/2-1 个* 取 pivot = min(pivot1, pivot2),两个数组中小于等于 pivot 的元素共计不会超过 (k/2-1) + (k/2-1) <= k-2 个* 这样 pivot 本身最大也只能是第 k-1 小的元素* 如果 pivot = pivot1,那么 nums1[0 .. k/2-1] 都不可能是第 k 小的元素。把这些元素全部 "删除",剩下的作为新的 nums1 数组* 如果 pivot = pivot2,那么 nums2[0 .. k/2-1] 都不可能是第 k 小的元素。把这些元素全部 "删除",剩下的作为新的 nums2 数组* 由于我们 "删除" 了一些元素(这些元素都比第 k 小的元素要小),因此需要修改 k 的值,减去删除的数的个数*/int m = nums1.size();	// 数组 nums1 的大小int n = nums2.size();	// 数组 nums2 的大小int index1 = 0, index2 = 0;	// 数组 nums1 和 nums2 的偏移while (true) {// 边界情况if (index1 == m) {	// 数组 nums1 为空return nums2[index2 + k - 1];	// 返回数组 nums2 中第 k 小的数}if (index2 == n) {	// 数组 nums2 为空return nums1[index1 + k - 1];	// 返回数组 nums1 中第 k 小的数}if (k == 1) {	// 若 k = 1,则返回两个有序数组中的未排除下标范围内的第一个数return min(nums1[index1], nums2[index2]);}// 正常情况int newIndex1 = min(index1 + k / 2 - 1, m - 1);	// 数组 nums1 加上偏移后的新下标int newIndex2 = min(index2 + k / 2 - 1, n - 1);		// 数组 nums2 加上偏移后的新下标int pivot1 = nums1[newIndex1];	// 数组 nums1 中参与比较的值int pivot2 = nums2[newIndex2];	// 数组 nums2 中参与比较的值if (pivot1 <= pivot2) {	// 若 A[k/2-1] <= B[k/2-1]k -= newIndex1 - index1 + 1;	// 更新 k = k - k / 2index1 = newIndex1 + 1;	// 更新数组 nums1 的偏移值}else {	// 若 B[k/2-1] < A[k/2-1]k -= newIndex2 - index2 + 1;	// 更新 k = k - k / 2index2 = newIndex2 + 1;	// 更新数组 nums2 的偏移值}}}double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {int totalLength = nums1.size() + nums2.size();	// 两数组总长if (totalLength % 2 == 1) {	// 若总长为奇数// 第 k 小的数即为中位数return getKthElement(nums1, nums2, (totalLength + 1) / 2);}else {	// 若总长为偶数// 中位数 = (第 k 小的数 + 第 [k + 1] 的数) / 2return (getKthElement(nums1, nums2, totalLength / 2) + getKthElement(nums1, nums2, totalLength / 2 + 1)) / 2.0;}}
};

2.Python3

class Solution:def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:# 此函数作用:寻找两有序数组 nums1 和 nums2 中第 k 小的数并返回该数def getKthElement(k):"""- 主要思路:要找到第 k (k>1) 小的元素,那么就取 pivot1 = nums1[k/2-1] 和 pivot2 = nums2[k/2-1] 进行比较- 这里的 "/" 表示整除- nums1 中小于等于 pivot1 的元素有 nums1[0 .. k/2-2] 共计 k/2-1 个- nums2 中小于等于 pivot2 的元素有 nums2[0 .. k/2-2] 共计 k/2-1 个- 取 pivot = min(pivot1, pivot2),两个数组中小于等于 pivot 的元素共计不会超过 (k/2-1) + (k/2-1) <= k-2 个- 这样 pivot 本身最大也只能是第 k-1 小的元素- 如果 pivot = pivot1,那么 nums1[0 .. k/2-1] 都不可能是第 k 小的元素。把这些元素全部 "删除",剩下的作为新的 nums1 数组- 如果 pivot = pivot2,那么 nums2[0 .. k/2-1] 都不可能是第 k 小的元素。把这些元素全部 "删除",剩下的作为新的 nums2 数组- 由于我们 "删除" 了一些元素(这些元素都比第 k 小的元素要小),因此需要修改 k 的值,减去删除的数的个数"""index1, index2 = 0, 0	# 数组 nums1 和 nums2 的偏移while True:# 特殊情况if index1 == m:	# 数组 nums1 为空return nums2[index2 + k - 1]	# 返回数组 nums2 中第 k 小的数if index2 == n:	# 数组 nums2 为空return nums1[index1 + k - 1]	# 返回数组 nums1 中第 k 小的数if k == 1:	# 若 k = 1,则返回两个有序数组中的未排除下标范围内的第一个数return min(nums1[index1], nums2[index2])# 正常情况newIndex1 = min(index1 + k // 2 - 1, m - 1)	# 数组 nums1 加上偏移后的新下标newIndex2 = min(index2 + k // 2 - 1, n - 1)	# 数组 nums2 加上偏移后的新下标pivot1, pivot2 = nums1[newIndex1], nums2[newIndex2]	# 数组 nums1,nums2 中参与比较的值if pivot1 <= pivot2:	# 若 A[k/2-1] <= B[k/2-1]k -= newIndex1 - index1 + 1	# 更新 k = k - k / 2index1 = newIndex1 + 1	# 更新数组 nums1 的偏移值else:	# 若 B[k/2-1] < A[k/2-1]k -= newIndex2 - index2 + 1	# 更新 k = k - k / 2index2 = newIndex2 + 1	# 更新数组 nums1 的偏移值m, n = len(nums1), len(nums2)	# 数组 nums1,nums2 的长度totalLength = m + n	# 数组 nums1,nums2 的总长度if totalLength % 2 == 1:	# 若总长度为奇数return getKthElement((totalLength + 1) // 2)	# 第 k 小的数即为中位数else:	# 若总长为偶数# 中位数 = (第 k 小的数 + 第 [k + 1] 的数) / 2return (getKthElement(totalLength // 2) + getKthElement(totalLength // 2 + 1)) / 2

3.Java

class Solution {public double findMedianSortedArrays(int[] nums1, int[] nums2) {int length1 = nums1.length, length2 = nums2.length;int totalLength = length1 + length2;if (totalLength % 2 == 1) {int midIndex = totalLength / 2;double median = getKthElement(nums1, nums2, midIndex + 1);return median;} else {int midIndex1 = totalLength / 2 - 1, midIndex2 = totalLength / 2;double median = (getKthElement(nums1, nums2, midIndex1 + 1) + getKthElement(nums1, nums2, midIndex2 + 1)) / 2.0;return median;}}public int getKthElement(int[] nums1, int[] nums2, int k) {/* 主要思路:要找到第 k (k>1) 小的元素,那么就取 pivot1 = nums1[k/2-1] 和 pivot2 = nums2[k/2-1] 进行比较* 这里的 "/" 表示整除* nums1 中小于等于 pivot1 的元素有 nums1[0 .. k/2-2] 共计 k/2-1 个* nums2 中小于等于 pivot2 的元素有 nums2[0 .. k/2-2] 共计 k/2-1 个* 取 pivot = min(pivot1, pivot2),两个数组中小于等于 pivot 的元素共计不会超过 (k/2-1) + (k/2-1) <= k-2 个* 这样 pivot 本身最大也只能是第 k-1 小的元素* 如果 pivot = pivot1,那么 nums1[0 .. k/2-1] 都不可能是第 k 小的元素。把这些元素全部 "删除",剩下的作为新的 nums1 数组* 如果 pivot = pivot2,那么 nums2[0 .. k/2-1] 都不可能是第 k 小的元素。把这些元素全部 "删除",剩下的作为新的 nums2 数组* 由于我们 "删除" 了一些元素(这些元素都比第 k 小的元素要小),因此需要修改 k 的值,减去删除的数的个数*/int length1 = nums1.length, length2 = nums2.length;int index1 = 0, index2 = 0;int kthElement = 0;while (true) {// 边界情况if (index1 == length1) {return nums2[index2 + k - 1];}if (index2 == length2) {return nums1[index1 + k - 1];}if (k == 1) {return Math.min(nums1[index1], nums2[index2]);}// 正常情况int half = k / 2;int newIndex1 = Math.min(index1 + half, length1) - 1;int newIndex2 = Math.min(index2 + half, length2) - 1;int pivot1 = nums1[newIndex1], pivot2 = nums2[newIndex2];if (pivot1 <= pivot2) {k -= (newIndex1 - index1 + 1);index1 = newIndex1 + 1;} else {k -= (newIndex2 - index2 + 1);index2 = newIndex2 + 1;}}}
}

4.Golang

func findMedianSortedArrays(nums1 []int, nums2 []int) float64 {totalLength := len(nums1) + len(nums2)if totalLength%2 == 1 {midIndex := totalLength/2return float64(getKthElement(nums1, nums2, midIndex + 1))} else {midIndex1, midIndex2 := totalLength/2 - 1, totalLength/2return float64(getKthElement(nums1, nums2, midIndex1 + 1) + getKthElement(nums1, nums2, midIndex2 + 1)) / 2.0}return 0
}func getKthElement(nums1, nums2 []int, k int) int {index1, index2 := 0, 0for {if index1 == len(nums1) {return nums2[index2 + k - 1]}if index2 == len(nums2) {return nums1[index1 + k - 1]}if k == 1 {return min(nums1[index1], nums2[index2])}half := k/2newIndex1 := min(index1 + half, len(nums1)) - 1newIndex2 := min(index2 + half, len(nums2)) - 1pivot1, pivot2 := nums1[newIndex1], nums2[newIndex2]if pivot1 <= pivot2 {k -= (newIndex1 - index1 + 1)index1 = newIndex1 + 1} else {k -= (newIndex2 - index2 + 1)index2 = newIndex2 + 1}}return 0
}func min(x, y int) int {if x < y {return x}return y
}

2.划分数组

2.1思路

时间复杂度:O(log(min(m,n)))
空间复杂度:O(1)

二分查找的时间复杂度已经很优秀了,但本题存在时间复杂度更低的一种方法。这里给出推导过程,勇于挑战自己的读者可以进行尝试。

为了使用划分的方法解决这个问题,需要理解「中位数的作用是什么」。在统计中,中位数被用来:

将一个集合划分为两个长度相等的子集,其中一个子集中的元素总是大于另一个子集中的元素。

如果理解了中位数的划分作用,就很接近答案了。

首先,在任意位置 iA 划分成两个部分:

           left_A            |          right_AA[0], A[1], ..., A[i-1]  |  A[i], A[i+1], ..., A[m-1]

由于 A 中有 m 个元素, 所以有 m+1 种划分的方法 i∈[0,m]

其中len(left_A)=i,len(right_A)=m−i.

注意:当 i=0 时,left_A 为空集, 而当 i=m 时, right_A 为空集。

采用同样的方式,在任意位置 jB 划分成两个部分:

           left_B            |          right_BB[0], B[1], ..., B[j-1]  |  B[j], B[j+1], ..., B[n-1]

left_Aleft_B 放入一个集合,并将 right_Aright_B 放入另一个集合。 再把这两个新的集合分别命名为 left_partright_part

          left_part          |         right_partA[0], A[1], ..., A[i-1]  |  A[i], A[i+1], ..., A[m-1]B[0], B[1], ..., B[j-1]  |  B[j], B[j+1], ..., B[n-1]

AB 的总长度是偶数时,如果可以确认:

len(left_part)=len(right_part)
max(left_part)≤min(right_part)

那么,{A,B} 中的所有元素已经被划分为相同长度的两个部分,且前一部分中的元素总是小于或等于后一部分中的元素。中位数就是前一部分的最大值和后一部分的最小值的平均值:

median = [max(left_part) + min(right_part)] / 2

当 A 和 B 的总长度是奇数时,如果可以确认:

len(left_part)=len(right_part)+1
max(left_part)≤min(right_part)

那么,{A,B} 中的所有元素已经被划分为两个部分,前一部分比后一部分多一个元素,且前一部分中的元素总是小于或等于后一部分中的元素。中位数就是前一部分的最大值:

median=max(left_part)

第一个条件对于总长度是偶数和奇数的情况有所不同,但是可以将两种情况合并。第二个条件对于总长度是偶数和奇数的情况是一样的。

要确保这两个条件,只需要保证:

(1)i+j=m−i+n−j(当 m+n 为偶数)或 i+j=m−i+n−j+1(当 m+n 为奇数)。
等号左侧为前一部分的元素个数,等号右侧为后一部分的元素个数。
ij 全部移到等号左侧,我们就可以得到 i + j = (m + n + 1) / 2
这里的分数结果只保留整数部分。
(2)0≤i≤m0≤j≤n。如果我们规定 A 的长度小于等于 B 的长度,即m≤n
这样对于任意的 i∈[0,m],都有 j = (m + n + 1) / 2 - i ∈ [0,n],那么我们在 [0,m] 的范围内枚举 i 并得到 j,就不需要额外的性质了。

如果 A 的长度较大,那么我们只要交换 AB 即可。
如果 m>n ,那么得出的 j 有可能是负数。

(3)B[j−1]≤A[i] 以及 A[i−1]≤B[j],即前一部分的最大值小于等于后一部分的最小值。

为了简化分析,假设 A[i−1],B[j−1],A[i],B[j] 总是存在。
对于 i=0i=mj=0j=n 这样的临界条件,我们只需要规定 A[−1]=B[−1]=−∞A[m]=B[n]=∞ 即可。
这也是比较直观的:

当一个数组不出现在前一部分时,对应的值为负无穷,就不会对前一部分的 最大值 产生影响;
当一个数组不出现在后一部分时,对应的值为正无穷,就不会对后一部分的 最小值 产生影响。

所以我们需要做的是:

[0,m] 中找到 i,使得:

B[j−1]≤A[i]A[i−1]≤B[j],其中 j = (m + n + 1) / 2 - i

我们证明它等价于:

[0,m] 中找到最大的 i,使得:A[i−1]≤B[j],其中 j = (m + n + 1) / 2 - i

这是因为:

i0∼m 递增时,A[i−1] 递增,B[j] 递减,所以一定存在一个最大的 i 满足 A[i−1]≤B[j]
如果 i 是最大的,那么说明 i+1 不满足。将 i+1 带入可以得到A[i]>B[j−1],也就是 B[j−1]<A[i],就和我们进行等价变换前 i 的性质一致了(甚至还要更强)。

因此我们可以对 i[0,m] 的区间上进行 二分搜索,找到最大的满足 A[i−1]≤B[j]i 值,就得到了划分的方法。此时,划分前一部分元素中的最大值,以及划分后一部分元素中的最小值,才可能作为就是这两个数组的中位数。

2.2代码

1.C++

class Solution {
public:double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {if (nums1.size() > nums2.size()) {	// 如果数组 nums1 的长度更长return findMedianSortedArrays(nums2, nums1);}int m = nums1.size();	// nums1 的大小int n = nums2.size();	// nums2 的大小int left = 0, right = m;	// nums1 的左右边界// median1:前一部分的最大值// median2:后一部分的最小值int median1 = 0, median2 = 0;while (left <= right) {// 前一部分包含 nums1[0 .. i-1] 和 nums2[0 .. j-1]// 后一部分包含 nums1[i .. m-1] 和 nums2[j .. n-1]int i = (left + right) / 2;	// 二分搜索满足条件的 i,此为初值int j = (m + n + 1) / 2 - i;	// 基于 i + j = (m + n + 1) / 2// nums_im1, nums_i, nums_jm1, nums_j 分别表示 nums1[i-1], nums1[i], nums2[j-1], nums2[j]int nums_im1 = (i == 0 ? INT_MIN : nums1[i - 1]);	// i  = 0 的情况,i - 1 为负无穷int nums_i = (i == m ? INT_MAX : nums1[i]);	// i = m 的情况,i 正无穷int nums_jm1 = (j == 0 ? INT_MIN : nums2[j - 1]);	// j  = 0 的情况,j - 1 为负无穷int nums_j = (j == n ? INT_MAX : nums2[j]);	// j = n 的情况,j 正无穷if (nums_im1 <= nums_j) {	// nums1[i - 1] <= nums2[j] 的情况median1 = max(nums_im1, nums_jm1);	// 前一部分的最大值:max(nums1[i - 1],nums2[j - 1])median2 = min(nums_i, nums_j);	// 后一部分的最小值:min(nums1[i],nums2[j])left = i + 1;	// 更新左边界} else {	// nums1[i - 1] > nums2[j] 的情况right = i - 1;	// 更新右边界}}// 根据两个数组的总长度的奇偶情况决定最后返回的中位数return (m + n) % 2 == 0 ? (median1 + median2) / 2.0 : median1;}
};

2.Python3

class Solution:def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:if len(nums1) > len(nums2):	# 如果数组 nums1 的长度更长return self.findMedianSortedArrays(nums2, nums1)infinty = 2**40	# 定义无穷值m, n = len(nums1), len(nums2)	# 数组 nums1 和数组 nums2 的长度left, right = 0, m	# 数组 nums1 的左右边界# median1:前一部分的最大值# median2:后一部分的最小值median1, median2 = 0, 0while left <= right:	# 二分查找目标 i# 前一部分包含 nums1[0 .. i-1] 和 nums2[0 .. j-1]# // 后一部分包含 nums1[i .. m-1] 和 nums2[j .. n-1]i = (left + right) // 2j = (m + n + 1) // 2 - i	# 基于 i + j = (m + n + 1) / 2# nums_im1, nums_i, nums_jm1, nums_j 分别表示 nums1[i-1], nums1[i], nums2[j-1], nums2[j]nums_im1 = (-infinty if i == 0 else nums1[i - 1])	# 根据 i 的值确定 nums[i - 1] 的值,若 i = 0,则为负无穷nums_i = (infinty if i == m else nums1[i])	# 根据 i 的值确定 nums[i] 的值,若 i = m,则为正无穷nums_jm1 = (-infinty if j == 0 else nums2[j - 1])	# 根据 j 的值确定 nums[j - 1] 的值,若 j = 0,则为负无穷nums_j = (infinty if j == n else nums2[j])	# 根据 j 的值确定 nums[j] 的值,若 j = n,则为正无穷if nums_im1 <= nums_j:	# nums1[i - 1] <= nums2[j] 的情况# 前一部分的最大值:max(nums1[i - 1],nums2[j - 1]),后一部分的最小值:min(nums1[i],nums2[j])median1, median2 = max(nums_im1, nums_jm1), min(nums_i, nums_j)left = i + 1	# 更新左边界else:right = i - 1	# 更新右边界# 根据两个数组的总长度的奇偶情况决定最后返回的中位数return (median1 + median2) / 2 if (m + n) % 2 == 0 else median1

3.Java

class Solution {public double findMedianSortedArrays(int[] nums1, int[] nums2) {if (nums1.length > nums2.length) {return findMedianSortedArrays(nums2, nums1);}int m = nums1.length;int n = nums2.length;int left = 0, right = m;// median1:前一部分的最大值// median2:后一部分的最小值int median1 = 0, median2 = 0;while (left <= right) {// 前一部分包含 nums1[0 .. i-1] 和 nums2[0 .. j-1]// 后一部分包含 nums1[i .. m-1] 和 nums2[j .. n-1]int i = (left + right) / 2;int j = (m + n + 1) / 2 - i;// nums_im1, nums_i, nums_jm1, nums_j 分别表示 nums1[i-1], nums1[i], nums2[j-1], nums2[j]int nums_im1 = (i == 0 ? Integer.MIN_VALUE : nums1[i - 1]);int nums_i = (i == m ? Integer.MAX_VALUE : nums1[i]);int nums_jm1 = (j == 0 ? Integer.MIN_VALUE : nums2[j - 1]);int nums_j = (j == n ? Integer.MAX_VALUE : nums2[j]);if (nums_im1 <= nums_j) {median1 = Math.max(nums_im1, nums_jm1);median2 = Math.min(nums_i, nums_j);left = i + 1;} else {right = i - 1;}}return (m + n) % 2 == 0 ? (median1 + median2) / 2.0 : median1;}
}

4.Golang

func findMedianSortedArrays(nums1 []int, nums2 []int) float64 {if len(nums1) > len(nums2) {return findMedianSortedArrays(nums2, nums1)}m, n := len(nums1), len(nums2)left, right := 0, mmedian1, median2 := 0, 0for left <= right {i := (left + right) / 2j := (m + n + 1) / 2 - inums_im1 := math.MinInt32if i != 0 {nums_im1 = nums1[i-1]}nums_i := math.MaxInt32if i != m {nums_i = nums1[i]}nums_jm1 := math.MinInt32if j != 0 {nums_jm1 = nums2[j-1]}nums_j := math.MaxInt32if j != n {nums_j = nums2[j]}if nums_im1 <= nums_j {median1 = max(nums_im1, nums_jm1)median2 = min(nums_i, nums_j)left = i + 1} else {right = i - 1}}if (m + n) % 2 == 0 {return float64(median1 + median2) / 2.0}return  float64(median1)
}func max(x, y int) int {if x > y {return x}return y
}func min(x, y int) int {if x < y {return x}return y
}

相关文章:

letcode 4.寻找两个正序数组的中位数(官方题解笔记)

题目描述 给定两个大小分别为 m 和 n 的正序&#xff08;从小到大&#xff09;数组 nums1 和 nums2。请你找出并返回这两个正序数组的 中位数 。 算法的时间复杂度应该为 O(log (mn)) 。 1.二分查找 1.1思路 时间复杂度&#xff1a;O(log(mn)) 空间复杂度&#xff1a;O(1) 给定…...

【面试题系列】K8S常见面试题

目录 序言 问题 1. 简单说一下k8s集群内外网络如何互通的吧 2.描述一下pod的创建过程 3. 描述一下k8s pod的终止过程 4.Kubernetes 中的自动伸缩有哪些方式&#xff1f; 5.Kubernetes 中的故障检测有哪些方式&#xff1f; 6.Kubernetes 中的资源调度有哪些方式&#xff…...

字符函数和字符串函数(上)-C语言详解

CSDN的各位友友们你们好,今天千泽为大家带来的是C语言中字符函数和字符串函数的详解,掌握了这些内容能够让我们更加灵活的运用字符串,接下来让我们一起走进今天的内容吧!写这篇文章需要在cplusplus.com上大量截图,十分不易!如果对您有帮助的话希望能够得到您的支持和帮助,我会持…...

全连接神经网络

目录 1.全连接神经网络简介 2.MLP分类模型 2.1 数据准备与探索 2.2 搭建网络并可视化 2.3 使用未预处理的数据训练模型 2.4 使用预处理后的数据进行模型训练 3. MLP回归模型 3.1 数据准备 3.2 搭建回归预测网络 1.全连接神经网络简介 全连接神经网络(Multi-Layer Percep…...

深度学习目标检测ui界面-交通标志检测识别

深度学习目标检测ui界面-交通标志检测识别 为了将算法封装起来&#xff0c;博主尝试了实验pyqt5的上位机界面进行封装&#xff0c;其中遇到了一些坑举给大家避开。这里加载的训练模型参考之前写的博客&#xff1a; 自动驾驶目标检测项目实战(一)—基于深度学习框架yolov的交通…...

ubuntu不同版本的源(换源)(镜像源)(lsb_release -c命令,显示当前系统的发行版代号(Codename))

文章目录查看unbuntu版本名&#xff08;lsb_release -c命令&#xff09;各个版本源代号&#xff08;仅供参考&#xff0c;具体代号用上面命令查&#xff09;各版本软件源Ubuntu20.10阿里源&#xff1a;清华源&#xff1a;Ubuntu20.04阿里源&#xff1a;清华源&#xff1a;Ubunt…...

linux入门---程序翻译的过程

我们在vs编译器中写的代码按下ctrl f5就可以直接运行起来&#xff0c;并且会将运行的结果显示到显示器上&#xff0c;这里看上去只有一个步骤但实际上这里会存在很多的细节&#xff0c;比如说生成结果在这里插入代码片之前我们的代码会经过预处理&#xff0c;编译&#xff0c;汇…...

springboot复习(黑马)

学习目标基于SpringBoot框架的程序开发步骤熟练使用SpringBoot配置信息修改服务器配置基于SpringBoot的完成SSM整合项目开发一、SpringBoot简介1. 入门案例问题导入SpringMVC的HelloWord程序大家还记得吗&#xff1f;SpringBoot是由Pivotal团队提供的全新框架&#xff0c;其设计…...

C++指针详解

旧文更新&#xff1a;两三年的旧文了&#xff0c;一直放在电脑里&#xff0c;现在直接传上CSDN 一、指针的概念 1.1 指针 程序运行时每个变量都会有一块内存空间&#xff0c;变量的值就存放在这块空间中。程序可以通过变量名直接访问这块空间内的数据&#xff0c;这种访问方…...

tauri+vite+vue3开发环境下创建、启动运行和打包发布

目录 1.创建项目 2.安装依赖 3.启动项目 4.打包生成windows安装包 5.安装打包生成的安装包 1.创建项目 运行下面命令创建一个tauri项目 pnpm create tauri-app 我创建该项目时的node版本为16.15.0 兼容性注意 Vite 需要 Node.js 版本 14.18&#xff0c;16。然而&#x…...

安卓进阶系列-系统基础

文章目录计算机结构冯诺依曼结构哈弗结构冯诺依曼结构与哈弗结构对比安卓采用的架构安卓操作系统进程间通讯&#xff08;IPC&#xff09;内存共享linux内存共享安卓内存共享管道Unix Domain Socket同步常见同步机制信号量Mutex管程安卓同步机制安卓中的Mutex安卓中的ConditionB…...

10 Wifi网络的封装

概述 Wifi有多种工作模式,比如:STA模式、AccessPoint模式、Monitor模式、Ad-hoc模式、Mesh模式等。但在IPC设备上,主要使用STA和AccessPoint这两种模式。下面分别进行介绍。 STA模式:任何一种无线网卡都可以运行在此模式,这种模式也是无线网卡的默认模式。在此模式下,无线…...

手把手的教你安装PyCharm --Pycharm安装详细教程(一)(非常详细,非常实用)

简介 Jetbrains家族和Pycharm版本划分&#xff1a; pycharm是Jetbrains家族中的一个明星产品&#xff0c;Jetbrains开发了许多好用的编辑器&#xff0c;包括Java编辑器&#xff08;IntelliJ IDEA&#xff09;、JavaScript编辑器&#xff08;WebStorm&#xff09;、PHP编辑器&…...

开发板与ubantu文件传送

接下来的所以实验都通过下面这种方式发送APP文件到开发板运行 目录 1、在ubantu配置 ①在虚拟机上添加一个桥接模式的虚拟网卡 ②设定网卡 ③在网卡上配置静态地址 2、开发板设置 ①查看网卡 ②配置网卡静态ip 3、 测试 ①ping ②文件传送 传送报错情况 配置环境&#…...

如何成为一名优秀的网络安全工程师?

前言 这是我的建议如何成为网络安全工程师&#xff0c;你应该按照下面顺序学习。 简要说明 第一件事你应该学习如何编程&#xff0c;我建议首先学python&#xff0c;然后是java。 &#xff08;非必须&#xff09;接下来学习一些算法和数据结构是很有帮助的&#xff0c;它将…...

面试问题之高并发内存池项目

项目部分 1.这个项目是什么? 高并发内存池的原型是谷歌一个开源项目&#xff0c;tcmalloc&#xff0c;而这个项目&#xff0c;就是tcmalloc中最核心的框架和部分拿出来进行模拟。他的作用就是在去代替原型的内存分配函数malloc和free。这个项目涉及的技术有&#xff0c;c&…...

如果阿里巴巴给蒋凡“百亿补贴”

出品 | 何玺 排版 | 叶媛 2021底&#xff0c;阿里内部进行组织架构大调整&#xff0c;任命蒋凡为阿里海外商业负责人&#xff0c;分管全球速卖通和国际贸易&#xff08;ICBU&#xff09;两个海外业务&#xff0c;以及Lazada等面向海外市场的多家子公司。 一年时间过去&#x…...

Linux版本现状

Linux的发行版本可以大体分为两类&#xff0c;一类是商业公司维护的发行版本&#xff0c;一类是社区组织维护的发行版本&#xff0c;前者以著名的Red Hat&#xff08;RHEL红帽&#xff09;为代表&#xff0c;后者以Debian为代表。Red HatRedhat&#xff0c;应该称为Redhat系列&…...

Winform中实现保存配置到文件/项目启动时从文件中读取配置(序列化与反序列化对象)

场景 Winform中实现序列化指定类型的对象到指定的Xml文件和从指定的Xml文件中反序列化指定类型的对象&#xff1a; Winform中实现序列化指定类型的对象到指定的Xml文件和从指定的Xml文件中反序列化指定类型的对象_winform xml序列化_霸道流氓气质的博客-CSDN博客 上面讲的序…...

基于python的超市历年数据可视化分析

人生苦短 我用python Python其他实用资料:点击此处跳转文末名片获取 数据可视化分析目录人生苦短 我用python一、数据描述1、数据概览二、数据预处理0、导入包和数据1、列名重命名2、提取数据中时间&#xff0c;方便后续分析绘图三、数据可视化1、美国各个地区销售额的分布&…...

GPT-4技术报告

摘要 链接&#xff1a;https://cdn.openai.com/papers/gpt-4.pdf 我们汇报了GPT-4的发展&#xff0c;这是一个大规模的多模态模型&#xff0c;可以接受图像和文本输入并产生文本输出。虽然在许多现实场景中&#xff0c;GPT-4的能力不如人类&#xff0c;但它在各种专业和学术基…...

前端性能优化

总结 使用打包工具对代码进行打包压缩&#xff1b;引入css时采用link标签&#xff0c;并放入头部&#xff0c;使其与文档一起加载&#xff0c;减少页面卡顿时间&#xff1b;尽量减少dom结构的重排和重绘&#xff1b;使用css雪碧图&#xff0c;减少网络请求&#xff1b;对不同分…...

尚医通-(三十三)就诊人管理功能实现

目录&#xff1a; &#xff08;1&#xff09;前台用户系统-就诊人管理-需求说明 &#xff08;2&#xff09;就诊人管理-接口开发-列表接口 &#xff08;3&#xff09;就诊人管理-接口开发-其他接口 &#xff08;4&#xff09;前台用户系统-就诊人管理-前端整合 &#xff0…...

《Spring Boot 趣味实战课》读书笔记(二)

牛刀小试——五分钟入门 Spring Boot 万物皆可 Hello World 创建一个 Web 工程 填写项目信息 选择依赖 从 IDEA 打开下载好的 Spring Boot 工程&#xff1a; 完成核心代码 创建 HelloController 类并编写 hello 方法 创建一个 HelloController 类&#xff0c;或者选择 Fi…...

Spring Cloud -- GateWay

为什么需要网关在微服务架构中&#xff0c;一个系统会被拆分为很多个微服务。那么作为客户端要如何去调用这么多的微服务呢&#xff1f;如果没有网关的存在&#xff0c;我们只能在客户端记录每个微服务的地址&#xff0c;然后分别去调用。这样的话会产生很多问题&#xff0c;例…...

【C语言】memcpy , memset等内存操作函数使用方法与注意事项

这个章节&#xff0c;我们探讨C语言内存操作函数。 重点介绍处理内存操作函数使用和注意事项 和内存函数如何模拟实现。 内存函数所需头文件 #include<string.h> 文章目录memcpymemcpy 函数模拟实现memmovememmove 函数模拟实现memcmpmemcmp 函数模拟实现memsetmemset 函…...

尚融宝04-mybatis-plus插件和条件构造器

目录 一、分页插件 1、添加配置类 2、添加分页插件 3、测试分页 二、XML自定义分页 1、UserMapper中定义接口方法 2、定义XML 3、测试 三、乐观锁 1、场景 2、乐观锁方案 3、乐观锁实现流程 4、优化流程 四、wapper介绍 1、Wrapper家族 2、创建测试类 五、Qu…...

面试重难点问题(C++)

持续更新&#xff01;&#xff01;&#xff01;&#xff01;&#xff01; 网络部分 1.问&#xff0c;四次挥手的过程&#xff0c;和双方状态变化&#xff1f; 挥手这前&#xff0c;两边都是established状态&#xff0c;客户端发起断开请求&#xff0c;向服务器发送fin请求&…...

androidx.appcompat 升级到1.5.1 趟过的坑

APP 要上google play&#xff0c;Android SDK 版本要升级到32&#xff1b;接了一个第三方SDK&#xff0c;不巧的是这个SDK引用appcompat是1.5.1&#xff0c;顺手把appcompat 包升级到1.5.1&#xff0c;这草率的一升&#xff0c;带来的不止一地鸡毛&#xff0c;还有精神上被残忍…...

[C++]反向迭代器

目录 前言&#xff1a; 1 对反向迭代器的构造思想 2 实现反向迭代器 3 完整代码 前言&#xff1a; 本篇文章主要介绍了STL容器当中的反向迭代器&#xff0c;可能有朋友会说&#xff1a;“反向迭代器有什么好学的&#xff1f;不一样还是迭代器吗&#xff0c;我正向能写出来&…...

廊坊开发区规划建设局网站/1000个关键词

做一件事&#xff0c;如果觉得难那就对了。容易达成的事&#xff0c;没有经过努力获取到的是没有成就感的。人生就像上坡&#xff0c;更高处的风景更值得期待。中国人民大学与加拿大女王大学金融硕士项目给予你前行的力量。 我们每个人的一生中&#xff0c;都是在不断攀登一座…...

哪里有学习做网站的/网络营销方式都有哪些

2016-12-12 11:57:12使用ajax的开发项目过程中&#xff0c;经常需要将json格式的字符串返回到前端&#xff0c;前端解析成js对象(JSON )。如果直接以json的格式返回则方便很多&#xff0c;有时候通过后台直接写到页面中则会以字符串的方式存在&#xff0c;那么就用到了将字符串…...

商城网站建设咨询/郑州制作网站公司

pytorch断点续传前言一、断点续传的作用&#xff1f;二、具体步骤1.保存断点2.加载断点三、其他需注意的地方前言 当在模型训练过程中遇到下面的情况时我们就需要断点续传的技巧了 本地训练到一半但由于有其他事情或事故必须主动或被动中断正在训练的模型等待后续再继续训练云…...

东莞做网站那家好/营销网站建设培训学校

oracle数据库的启动和停止过程 一、管理监听程序 只有具备sysdba和sysoper系统权限的用户才能启动和关闭数据库。在启动数据库之前应先启动监听程序&#xff0c;如果监听程序没有启动就不能利用命令方式来管理数据库&#xff0c;包括启动和关闭数据库。 启动监听 lsnrctl star…...

如何购买网站/百度搜索资源管理平台

题目地址(559. N 叉树的最大深度) https://leetcode-cn.com/problems/maximum-depth-of-n-ary-tree/ 题目描述 给定一个 N 叉树&#xff0c;找到其最大深度。最大深度是指从根节点到最远叶子节点的最长路径上的节点总数。N 叉树输入按层序遍历序列化表示&#xff0c;每组子节…...

做淘宝客网站域名是别人的/网页模板免费html

转载自 http://www.linuxsir.org/bbs/showthread.php?t184419 如何从源码包安装软件&#xff1f; 从源码包安装软件最重要的就是仔细阅读README INSTALL等说明文件 它会告诉你怎样才能成功安装 通常从源码包安装软件的步骤是&#xff1a;tar jxvf gtk-2.4.13.tar.bz2 解开源码…...