Kaggle实战入门:泰坦尼克号生生还预测
Kaggle实战入门:泰坦尼克号生生还预测
- 1. 加载数据
- 2. 特征工程
- 3. 模型训练
- 4. 模型部署
泰坦尼克号(Titanic),又称铁达尼号,是当时世界上体积最庞大、内部设施最豪华的客运轮船,有“永不沉没”的美誉,被称为“世界工业史上的奇迹”。1912年4月10日,她在从英国南安普敦出发,驶往美国纽约的首次处女航行中,不幸与一座冰山相撞,1912年4月15日凌晨2时20分左右,船体断裂成两截,永久沉入大西洋底3700米处,2224名船员及乘客中,逾1500人丧生。
而以此事件为背景的《泰坦尼克号》则是成为了电影史上的传奇,该片由詹姆斯•卡梅隆执导,莱昂纳多•迪卡普里奥、凯特•温斯莱特领衔主演。在中国大陆上映的时间是1998年4月,虽然时隔25年,泰坦尼克号也已沉没111年,但每当影片主题曲my heart will go on中悠扬的苏格兰风笛声响起时,每个人都会再次被带回那艘奥林匹克级的豪华邮轮。
机器学习领域,著名的数据科学竞赛平台kaggle的入门经典也是以泰坦尼克号事件为背景。该问题通过训练数据(train.csv)给出891名乘客的基本信息以及生还情况,通过训练数据生成合适的模型,并根据另外418名乘客的基本信息(test.csv)预测其生还情况,并将生还情况以要求的格式(gender_submission.csv)提交,kaggle会根据你的提交情况给出评分与排名。
1. 加载数据
import pandas as pd
file = r'datasets/train.csv'
data = pd.read_csv(file)
加载数据完成后,可使用内置方法对数据进行探查,初步认识数据。
data.head(5) #查看前5行数据:data.iloc[:5] 或者 data.loc[:5]
输出
data.info() #查看整体信息
输出
<class ‘pandas.core.frame.DataFrame’>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
PassengerId 891 non-null int64
Survived 891 non-null int64
Pclass 891 non-null int64
Name 891 non-null object
Sex 891 non-null object
Age 714 non-null float64
SibSp 891 non-null int64
Parch 891 non-null int64
Ticket 891 non-null object
Fare 891 non-null float64
Cabin 204 non-null object
Embarked 889 non-null object
dtypes: float64(2), int64(5), object(5)
memory usage: 83.7+ KB
可以看出,数据共有11个字段,其中Age有714个非空值,而Cabin仅有204个非空值。每个字段含义如下:
字段名 | 字段含义 |
---|---|
PassengerId | 乘客ID |
Pclass | 客舱等级 |
Name | 乘客姓名 |
Sex | 性别 |
Age | 年龄 |
SibSp | 兄弟姐妹、配偶 |
Parch | 父母与子女 |
Ticket | 船票编号 |
Fare | 票价 |
Cabin | 客舱号 |
Embarked | 登船港口 |
data.Pclass.unique() #查看字段的取值情况
输出
array([3, 1, 2])
data.Pclass.value_counts() #查看字段取值的统计值
输出
3 491
1 216
2 184
Name: Pclass, dtype: int64
2. 特征工程
特征工程(Feature Engineering)极其重要,特征的选择与处理直接影响到模型效果。实际中,特征工程很多时候是依赖业务经验的。
通过数据探查,可以发现该数据包含以下几类属性
- 标称属性(Nominal attribute):Sex(性别)、Embarked(登船港口)
- 标称属性(Ordinal attribute):Pclass(客舱等级)
- 数值属性(Numeric attribute):Age(年龄)、SibSp(兄弟姐妹、配偶)、Parch(父母与子女)、Fare(票价)
- 其他:Name(乘客姓名)、Ticket(船票编号)、Cabin(客舱号)
(1)统计分析各属性与生还结果的相关性
针对Sex、Pclass、Embarkd与Survived的关系,可使用crosstab
函数(或groupby
函数)分别进行聚合统计,计算相应的百分比以实现归一化,并做图。
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['Arial Unicode MS'] #Mac系统设置中文显示
plt.rcParams['axes.unicode_minus'] = Falsefig = plt.figure()
fig.set(alpha=0.65) # 设置图像透明度
ax1=fig.add_subplot(131)
ax2=fig.add_subplot(132)
ax3=fig.add_subplot(133)cou_Sex = pd.crosstab(data.Sex,data.Survived)
#或者用counts_Sex = data.groupby(['Sex','Survived']).size().unstack
cou_Sex.rename({0:'未生还',1:'生还'},axis=1,inplace=True)
cou_Sex.rename({'female':'F','male':'M'},inplace=True)
pct_Sex = cou_Sex.div(cou_Sex.sum(1).astype(float),axis=0) #归一化
pct_Sex.plot(kind='bar',stacked=True,title=u'不同性别的生还情况',ax=ax1)cou_Pclass = pd.crosstab(data.Pclass,data.Survived)
cou_Pclass.rename({0:'未生还',1:'生还'},axis=1,inplace=True)
pct_Pclass = cou_Pclass.div(cou_Pclass.sum(1).astype(float),axis=0)
pct_Pclass.plot(kind='bar',stacked=True,title=u'不同等级的生还情况',ax=ax2,sharey=ax1)cou_Embarked = pd.crosstab(data.Embarked,data.Survived)
cou_Embarked.rename({0:'未生还',1:'生还'},axis=1,inplace=True)
pct_Embarked = cou_Embarked.div(cou_Embarked.sum(1).astype(float),axis=0)
pct_Embarked.plot(kind='bar',stacked=True,title=u'不同登录点生还情况',ax=ax3,sharey=ax1)
输出
可直观的看出生还情况受性别(女性乘客生还概率较高)、客舱等级(一等舱乘客生还概率较高)、登船港口(C港口登船乘客生还概率较高)的影响。
针对数值属性的Age、Fare,可使用cut
函数将其离散化后,再进行统计分析。
fig = plt.figure()
fig.set(alpha=0.65) # 设置图像透明度
ax1=fig.add_subplot(121)
ax2=fig.add_subplot(122)bins=[0,14,30,45,60,80]
cats=pd.cut(data.Age.as_matrix(),bins) #Age离散化
data.Age=cats.codescou_Age = pd.crosstab(data.Age,data.Survived)
cou_Age.rename({0:'未生还',1:'生还'},axis=1,inplace=True)
pct_Age = cou_Age.div(cou_Age.sum(1).astype(float),axis=0)
pct_Age.plot(kind='bar',stacked=True,title=u'不同年龄的生还情况',ax=ax1)bins=[0,15,30,45,60,300]
cats=pd.cut(data.Fare.as_matrix(),bins) #Fare离散化
data.Fare=cats.codescou_Fare = pd.crosstab(data.Fare,data.Survived)
cou_Fare.rename({0:'未生还',1:'生还'},axis=1,inplace=True)
pct_Fare = cou_Fare.div(cou_Fare.sum(1).astype(float),axis=0)
pct_Fare.plot(kind='bar',stacked=True,title=u'不同票价的生还情况',ax=ax2,sharey=ax1)
可直观的看出年龄越小生还概率越高、票价越高生活概率越高(-1表示缺失值)。
(2)计算相关系数分析各属性与生还结果的相关性
使用corr
函数计算属性aaa和bbb之间的相关性r(a,b)r(a,b)r(a,b),corr
函数默认使用Person系数,取值在[−1,1][-1,1][−1,1]之间。
- r(a,b)>0r(a,b)>0r(a,b)>0表示属性aaa和bbb正相关
- r(a,b)<0r(a,b)<0r(a,b)<0表示属性aaa和bbb负相关
- r(a,b)=0r(a,b)=0r(a,b)=0表示属性aaa和bbb相互独立。
def dataProcess(data):mapTrans={'female':0,'male':1,'S':0,'C':1,'Q':2} #属性值转换data.Sex=data.Sex.map(mapTrans)data.Embarked=data.Embarked.map(mapTrans)data.Embarked=data.Embarked.fillna(data.Embarked.mode()[0]) #使用众数填充data.Age=data.Age.fillna(data.Age.mean()) #均值填充缺失年龄data.Fare=data.Fare.fillna(data.Fare.mean()) #均值填充缺失Farereturn datadata = data = pd.read_csv(file)#重新载入数据
data = dataProcess(data)
data.iloc[:,1:].corr()['Survived']
输出
Survived 1.000000
Pclass -0.338481
Sex -0.543351
Age -0.069809
SibSp -0.035322
Parch 0.081629
Fare 0.257307
Embarked 0.106811
Name: Survived, dtype: float64
可以看出Survived与Pclass、Sex、Fare、Embarked相关性较大。
使用seaborn库的热力图可视化展示:
import seaborn as sns #导入seaborn绘图库
sns.set(style='white', context='notebook', palette='deep')
sns.heatmap(data.iloc[:,1:].corr(),annot=True, fmt = ".2f", cmap = "coolwarm")
通过上述分析,选择[‘Pclass’, ‘Sex’, ‘Age’, ‘Fare’, ‘Embarked’]作为特征,其中使用map
方法将Sex、Embarked映射为数值,并用fillna
方法填充Embark、Age、Fare的缺失值。
3. 模型训练
构建决策树模型,并使用fit
方法完成模型的训练。
feature =['Pclass','Sex','Age','Fare','Embarked']
X = data[feature] #选择特征
y = data.Survived #标签from sklearn.tree import DecisionTreeClassifier as DT
clf = DT() #建立模型
clf.fit(X,y) #训练模型
可使用准确率(score
方法)和混淆矩阵(metrics.confusion_matrix方法
)对模型进行评估。
print('%.3f' %(clf.score(X,y))) #准确率
输出
0.980
from sklearn import metrics
metrics.confusion_matrix(y, clf.predict(X)) #混淆矩阵
输出
array([[546, 3],
[ 15, 327]])
4. 模型部署
加载test.csv文件的数据,进行处理,并使用predict
方法预测,将生成的结果文件在Kaggle页面点击Submit Predictions进行提交,Kaggle会给出准确率和排名。
data_sub = pd.read_csv(r'datasets/test.csv') #加载测试数据
data_sub = dataProcess(data_sub) #处理测试数据
X_sub = data_sub[feature] #提取测试数据特征
y_sub = clf.predict(X_sub) #使用模型预测数据标签
result = pd.DataFrame({'PassengerId':data_sub['PassengerId'].as_matrix(), 'Survived':y_sub}) #形成要求格式
result.to_csv(r'D:\[DataSet]\1_Titanic\submission.csv', index=False) #输出至文件
相关文章:
Kaggle实战入门:泰坦尼克号生生还预测
Kaggle实战入门:泰坦尼克号生生还预测1. 加载数据2. 特征工程3. 模型训练4. 模型部署泰坦尼克号(Titanic),又称铁达尼号,是当时世界上体积最庞大、内部设施最豪华的客运轮船,有“永不沉没”的美誉ÿ…...
【大汇总】11个Python开发经典错误(1)
“但是太阳,他每时每刻都是夕阳也都是旭日。当他熄灭着走下山去收尽苍凉残照之际,正是他在另一面燃烧着爬上山巅散烈烈朝晖之时。” --------史铁生《我与地坛》 🎯作者主页:追光者♂🔥 🌸个人简介:计算机专业硕士研究生💖、2022年CSDN博客之星人工智能领…...
Java中的异常
程序错误一般分为三种:编译错误: 编写程序时没有遵循语法规则,编译程序能够自己发现错误并提示位置和原因。运行错误:程序在执行的时候运行环境发现了不能执行的操作。比如,JVM出错了,内存溢出等。逻辑错误…...
L2-022 重排链表 L2-002 链表去重
给定一个单链表 L1 →L2→⋯→L n−1 →L n ,请编写程序将链表重新排列为 L n →L 1 →L n−1 →L 2 →⋯。例如:给定L为1→2→3→4→5→6,则输出应该为6→1→5→2→4→3。 输入格式: 每个输入包含1个测试用例。每个测试用例第1行…...
【手撕八大排序】——插入排序
文章目录插入排序概念插入排序分为2种一 .直接插入排序直接插入排序时间复杂度二.希尔排序希尔排序时间复杂度效率比较插入排序概念 直接插入排序是从一个有序的序列中选择一个合适的位置进行插入,这个合适的位置取决于是要升序排序还是降序排序。 每一次进行排序…...
flink多流操作(connect cogroup union broadcast)
flink多流操作1 分流操作2 connect连接操作2.1 connect 连接(DataStream,DataStream→ConnectedStreams)2.2 coMap(ConnectedStreams → DataStream)2.3 coFlatMap(ConnectedStreams → DataStream)3 union操作3.1 uni…...
漫画:什么是快速排序算法?
这篇文章,以对话的方式,详细着讲解了快速排序以及排序排序的一些优化。 一禅:归并排序是一种基于分治思想的排序,处理的时候可以采取递归的方式来处理子问题。我弄个例子吧,好理解点。例如对于这个数组arr[] { 4&…...
vue 3.0组件(下)
文章目录前言:一,透传属性和事件1. 如何“透传属性和事件”2.如何禁止“透传属性和事件”3.多根元素的“透传属性和事件”4. 访问“透传属性和事件”二,插槽1. 什么是插槽2. 具名插槽3. 作用域插槽三,单文件组件CSS功能1. 组件作用…...
双指针 -876. 链表的中间结点-leetcode
开始一个专栏,写自己的博客 双指针,也算是作为自己的笔记吧! 双指针从广义上来说,是指用两个变量在线性结构上遍历而解决的问题。狭义上说, 对于数组,指两个变量在数组上相向移动解决的问题;对…...
Linux之运行级别
文章目录一、指定运行级别基本介绍CentOS7后运行级别说明一、指定运行级别 基本介绍 运行级别说明: 0:关机 1:单用户【找回丢失密码】 2:多用户状态没有网络服务 3:多用户状态有网络服务 4:系统未使用保留给用户 5:图形界面 6:系统重启 常用运行级别是3和5,也可以…...
python搭建web服务器
前言:相信看到这篇文章的小伙伴都或多或少有一些编程基础,懂得一些linux的基本命令了吧,本篇文章将带领大家服务器如何部署一个使用django框架开发的一个网站进行云服务器端的部署。 文章使用到的的工具 Python:一种编程语言&…...
【SpringCloud】SpringCloud Feign详解
目录前言SpringCloud Feign远程服务调用一.远程调用逻辑图二.两个服务的yml配置和访问路径三.使用RestTemplate远程调用四.构建Feign五.自定义Feign配置六.Feign配置日志七.Feign调优八.抽离Feign前言 微服务分解成多个不同的服务,那么多个服务之间怎么调用呢&…...
更改Hive元数据发生的生产事故
今天同事想在hive里用中文做为分区字段。如果用中文做分区字段的话,就需要更改Hive元 数据库。结果发生了生产事故。导致无法删除表和删除分区。记一下。 修改hive元数据库的编码方式为utf后可以支持中文,执行以下语句: alter table PARTITI…...
《Netty》从零开始学netty源码(八)之NioEventLoop.selector
目录java原生的WEPollSelectorImplnetty的SelectionKey容器SelectedSelectionKeySetnetty的SelectedSelectionKeySetSelectorSelectorTupleopenSelector每一个NioEventLoop配一个选择器Selector,在创建NioEventLoop的构造函数中会调用其自身方法openSelector获取sel…...
TCP UDP详解
文章目录TCP UDP协议1. 概述2. 端口号 复用 分用3. TCP3.1 TCP首部格式3.2 建立连接-三次握手3.3 释放连接-四次挥手3.4 TCP流量控制3.5 TCP拥塞控制3.6 TCP可靠传输的实现3.7 TCP超时重传4. UDP5.TCP与UDP的区别TCP UDP协议 1. 概述 TCP、UDP协议是TCP/IP体系结构传输层中的…...
超详细淘宝小程序的接入开发步骤
本文是向大家介绍的关于工作中遇到的如何对接淘宝小程序开发的步骤,它能够帮助大家省略在和淘宝侧对接沟通过程中的一些繁琐问题,便捷大家直接快速开展工作~~一、步骤演示1、首先我们打开淘宝开放平台,进入控制台2、进入控制台后,…...
【Python】正则表达式re库
文章目录函数re.match函数re.search函数re.findall函数re.compile函数re.sub函数re.split函数修饰符正则表达式模式正则表达式实例函数 re.match函数 re.match()函数用于尝试从字符串的 起始位置 匹配一个模式,匹配成功返回一个匹配对象,否则返回None。…...
JDK8使用Visual VM根据Dump文件排查OutOfMemoryError生产问题思路
文章目录1. 前言2. 堆内存溢出3. GC执行异常4. 元空间内存溢出5. 创建线程异常6. 内存交换问题7. 数组长度过大8. 系统误杀异常1. 前言 当系统异常产生了dump文件需要我们对其进行排查时,其本质上考验的是我们对于Java运行时内存结构的知识掌握是否牢固以及对业务代…...
2023年网络安全比赛--网络安全事件响应中职组(超详细)
一、竞赛时间 180分钟 共计3小时 二、竞赛阶段 1.找出黑客植入到系统中的二进制木马程序,并将木马程序的名称作为Flag值(若存在多个提交时使用英文逗号隔开,例如bin,sbin,…)提交; 2.找出被黑客修改的系统默认指令,并将被修改的指令里最后一个单词作为Flag值提交; 3.找出…...
【半监督学习】3、PseCo | FPN 错位对齐的高效半监督目标检测器
文章目录一、背景二、方法2.1 基础框架结构2.2 带噪声的伪边界框学习2.3 多视图尺度不变性学习三、实验论文:PseCo: Pseudo Labeling and Consistency Training for Semi-Supervised Object Detection 代码:https://github.com/ligang-cs/PseCo 出处&a…...
Tomcat+Servlet初识
文章目录Tomcat什么是TomcatTomcat的安装启动tomcat静态页面的访问动态页面的访问一个Servlet程序的部署流程Tomcat 什么是Tomcat Tomcat是一个HTTP服务器,在开发或调试Servlet代码时应用广泛;使用Tomcat,实际就是将用户浏览器输入的http请…...
ChatGPT-4 终于来了(文末附免费体验地址)
大家好,我是小钱学长。 ChatGPT4.0 重磅来袭,今天一打开plus页面出现的就是这个GPT-4的体验界面!现在就带大家一起看看GPT4.0。 进入之后是这样的 看到最下面有一行话,目前应该是4个小时限制100条消息。 GPT-4有什么优势&…...
【C++学习】类和对象(中)一招带你彻底了解六大默认成员函数
前言:在之前,我们对类和对象的上篇进行了讲解,今天我们我将给大家带来的是类和对象中篇的学习,继续深入探讨【C】中类和对象的相关知识!!! 目录 1. 类的6个默认成员函数 2. 构造函数 2.1概念介…...
面试——Java基础
说一说你对Java访问权限的了解 在修饰成员变量/成员方法时,该成员的四种访问权限的含义如下: private:该成员可以被该类内部成员访问; default:该成员可以被该类内部成员访问,也可以被同一包下其他的类访…...
JavaWeb——Request(请求)和Response(响应)介绍
在写servlet时需要实现5个方法,在一个service方法里面有两个参数request和response。 浏览器向服务器发送请求会发送HTTP的请求数据——字符串,这些字符串会被Tomcat所解析,然后这些请求数据会被放到一个对象(request)里面保存。 相应的Tom…...
JMeter压测文件上传接口和中文乱码
一、压测文件上传接口 新建测试计划,然后添加需要的元件。 1、添加HTTP信息头管理器 可以在测试计划中添加,也可以在线程组里面添加。 我的接口使用到 token信息。这里在测试计划中添加。 2、添加线程组 上图解释:会在 2秒钟之内启动起来 5…...
CSRF漏洞复现
目录标题原理如何实现和xss区别危害CSRF实战(pikachu)dvwa靶场CSRF(Cross Site Request Forgery)。跨站请求伪造原理 攻击者会伪造一个请求(一般是一个链接),然后让用户去点击,然后…...
Google Colab导入GitHub python项目进行运行
本文介绍包含 ipynb后缀文件的github项目,导入到GitHub上进行运行的方法。 导入项目 Colab是需要梯子的。 访问网址:https://colab.research.google.com 输入github网之后回车,下面的内容是从github上自动获取的。 选择项目要打开的ipynb文…...
Qss样式表语法
QSS样式表语法 更多精彩内容👉个人内容分类汇总 👈👉QSS样式学习 👈文章目录QSS样式表语法[toc]概述一、样式规则二、选择器类型三、子控件四、伪状态五、样式表冲突解决六、级联七、继承八、命名空间中的控件概述 Qt样式表的概念…...
「Python 基础」异步 I/O 编程
I/O 密集型应用程序大大提升系统多任务处理能力; 异步 I/O 模型 一个消息循环,主线程在消息循环中不断重复 读取消息-处理消息; # 获取线程池 loop get_event_loop() while True:# 接收事件消息event loop.get_event()# 处理事件消息pro…...
哪个网站做推销产品/产品推广的渠道有哪些
实际上有两种方式去解决这种 问题, 一个是之前所提到的多进程和多线程的问题,第二种方式 就是本次要将的异步IO 它的原理就是当代码需要执行一个耗时的IO操作的时候,它只发出IO指令,并不等待IO结果,然后 去执行其他代…...
建设银行管官方网站/百度在线客服人工服务
第七次作业--项目需求分析(团队) 标签(空格分隔): 软工实践 与Z班接洽,加紧制作中..为了不影响其他组完成作业,简易评审表先附上 项目名称成员列表分析格式内容PPT演讲总分优点缺点存在问题建议…...
网站建设 交单流程/合肥百度推广优化排名
操作系统是Ubuntu Server 12.10 先安装Thrift sudo apt-get install libboost-dev libboost-test-dev \ libboost-program-options-dev libevent-dev automake \ libtool flex bison pkg-config g libssl-dev 如果你还要使用别的语言,也需要安装对应的包 Ruby ruby-…...
免费psd素材网/成都纯手工seo
咳咳!先打一波小广告,在上一篇里忘记了,那啥……我的那个个人博客做好了-->(我的博客)<--。嘿嘿 好嘞,言归正传,说说我们的效果。 其实就是实现横向滑动,进行选择。 原理: 鼠标按下&#…...
视频网站主持人/卖链接的网站
各位玩家好!大家期待的破天一剑单机一键安装版终于问世了!!整个安装程序457M,无须安装SQL2000、补丁,破天单机一键安装,安装过程3分钟,全自动安装。。。20100207(农历小年),做人要厚道,非诚勿扰!设置如下:上线小退60级…...
医疗软件网站建设公司/长沙seo网站推广
jstl与EL表达式 一el表达式介绍 EL 全名为Expression Language EL 语法很简单,它最大的特点就是使用上很方便。接下来介绍EL主要的语法结构: ${sessionScope.user.sex} 所有EL都是以${为起始、以}为结尾的。上述EL范例的意思是:从Sessio…...