当前位置: 首页 > news >正文

【机器学习框架TensorFlow和PyTorch】基本使用指南

机器学习框架TensorFlow和PyTorch:基本使用指南

目录

  1. 引言
  2. TensorFlow概述
    • TensorFlow简介
    • TensorFlow的基本使用
  3. PyTorch概述
    • PyTorch简介
    • PyTorch的基本使用
  4. TensorFlow和PyTorch的对比
  5. 结论

引言

随着深度学习的快速发展,机器学习框架在实际应用中起到了重要作用。TensorFlow和PyTorch是目前最受欢迎的两大机器学习框架,它们各具特色并广泛应用于各类深度学习任务。本文将详细介绍TensorFlow和PyTorch的基本使用方法,帮助读者快速上手这两大框架。


TensorFlow概述

TensorFlow简介

TensorFlow是由Google开发的一个开源机器学习框架,具有强大的计算能力和灵活的模型构建方式。它支持分布式计算,能够高效处理大规模数据。

TensorFlow的基本使用

安装

使用pip安装TensorFlow:

pip install tensorflow
构建并训练一个简单的神经网络

以下示例展示了如何使用TensorFlow构建并训练一个简单的神经网络来进行手写数字识别任务:

import tensorflow as tf
from tensorflow.keras import layers, models
from tensorflow.keras.datasets import mnist
from tensorflow.keras.utils import to_categorical# 加载数据
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()
train_images = train_images.reshape((60000, 28, 28, 1)).astype('float32') / 255
test_images = test_images.reshape((10000, 28, 28, 1)).astype('float32') / 255
train_labels = to_categorical(train_labels)
test_labels = to_categorical(test_labels)# 构建模型
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))# 编译模型
model.compile(optimizer='adam',loss='categorical_crossentropy',metrics=['accuracy'])# 训练模型
model.fit(train_images, train_labels, epochs=5, batch_size=64, validation_split=0.2)# 评估模型
test_loss, test_acc = model.evaluate(test_images, test_labels)
print(f'Test accuracy: {test_acc}')

PyTorch概述

PyTorch简介

PyTorch是由Facebook开发的一个开源机器学习框架,以其灵活性和易用性受到广泛欢迎。PyTorch采用动态图计算,使得模型构建和调试更加方便。

PyTorch的基本使用

安装

使用pip安装PyTorch:

pip install torch torchvision
构建并训练一个简单的神经网络

以下示例展示了如何使用PyTorch构建并训练一个简单的神经网络来进行手写数字识别任务:

import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms# 数据预处理
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))])# 加载数据
trainset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True)
testset = torchvision.datasets.MNIST(root='./data', train=False, download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=64, shuffle=False)# 构建模型
class Net(nn.Module):def __init__(self):super(Net, self).__init__()self.conv1 = nn.Conv2d(1, 32, 3, 1)self.conv2 = nn.Conv2d(32, 64, 3, 1)self.fc1 = nn.Linear(9216, 128)self.fc2 = nn.Linear(128, 10)def forward(self, x):x = nn.functional.relu(self.conv1(x))x = nn.functional.max_pool2d(x, 2, 2)x = nn.functional.relu(self.conv2(x))x = nn.functional.max_pool2d(x, 2, 2)x = torch.flatten(x, 1)x = nn.functional.relu(self.fc1(x))x = self.fc2(x)return nn.functional.log_softmax(x, dim=1)model = Net()# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)# 训练模型
for epoch in range(5):running_loss = 0.0for images, labels in trainloader:optimizer.zero_grad()outputs = model(images)loss = criterion(outputs, labels)loss.backward()optimizer.step()running_loss += loss.item()print(f'Epoch {epoch+1}, Loss: {running_loss/len(trainloader)}')# 评估模型
correct = 0
total = 0
with torch.no_grad():for images, labels in testloader:outputs = model(images)_, predicted = torch.max(outputs.data, 1)total += labels.size(0)correct += (predicted == labels).sum().item()print(f'Test accuracy: {correct / total}')

TensorFlow和PyTorch的对比

易用性

  • TensorFlow:适合工业级应用,具有丰富的工具和资源,但学习曲线相对较陡。
  • PyTorch:采用动态图计算,代码更简洁易懂,适合研究和快速原型开发。

生态系统

  • TensorFlow:拥有完整的生态系统,包括TensorFlow Extended(TFX)、TensorFlow Lite和TensorFlow Serving等。
  • PyTorch:集成了强大的视觉和文本处理库,如torchvision和torchtext,并且与Hugging Face的Transformers库无缝结合。

性能

  • TensorFlow:在大规模分布式训练中表现优异,支持TPU加速。
  • PyTorch:在小规模模型和研究项目中更具优势,支持动态调整和调试。

结论

TensorFlow和PyTorch作为当前最流行的两大机器学习框架,各具特色且应用广泛。通过本文的介绍,读者可以了解到这两个框架的基本使用方法,并能够根据具体需求选择适合的框架。无论是工业级应用还是研究项目,TensorFlow和PyTorch都能够提供强大的支持,帮助我们高效地进行机器学习任务。


通过对TensorFlow和PyTorch的深入探讨,本文希望读者能够充分利用这两大框架的优势,实现机器学习的高效开发和应用,提升数据处理和分析能力。

相关文章:

【机器学习框架TensorFlow和PyTorch】基本使用指南

机器学习框架TensorFlow和PyTorch:基本使用指南 目录 引言TensorFlow概述 TensorFlow简介TensorFlow的基本使用 PyTorch概述 PyTorch简介PyTorch的基本使用 TensorFlow和PyTorch的对比结论 引言 随着深度学习的快速发展,机器学习框架在实际应用中起到…...

matlab 中的methods(Access = protected) 是什么意思

gpt版本 在 MATLAB 中,methods 是用于定义类方法的一部分。(Access protected) 是一种访问控制修饰符,它限制了方法的访问权限。具体来说,当你在类定义中使用 methods(Access protected) 时,你是在定义只有类本身及其子类可以访…...

【漏洞复现】Netgear WN604 downloadFile.php 信息泄露漏洞(CVE-2024-6646)

0x01 产品简介 NETGEAR WN604是一款由NETGEAR(网件)公司生产的无线接入器(或无线路由器)提供Wi-Fi保护协议(WPA2-PSK, WPA-PSK),以及有线等效加密(WEP)64位、128位和152…...

图像处理 -- ISP调优(tuning)的步骤整理

ISP调优流程培训文档 1. 硬件准备 选择合适的图像传感器:根据项目需求选择合适的传感器型号。搭建测试环境:包括测试板、光源、色彩卡和分辨率卡等。 2. 初始设置 寄存器配置:初始化传感器的寄存器设置,包括曝光、增益、白平衡…...

【中项】系统集成项目管理工程师-第4章 信息系统架构-4.2系统架构

前言:系统集成项目管理工程师专业,现分享一些教材知识点。觉得文章还不错的喜欢点赞收藏的同时帮忙点点关注。 软考同样是国家人社部和工信部组织的国家级考试,全称为“全国计算机与软件专业技术资格(水平)考试”&…...

node.js中nodemon : 无法加载和使用问题,这是由于windows安全策略影起的按如下操作即可

1、用管理员权限打开vscode 2、文件终端中打开,输入 Set-ExecutionPolicy -Scope CurrentUser 3、再输入RemoteSigned 4、使用get-ExecutionPolicy查看权限,可以看到变为了RemoteSigned 重启问题解决...

【SD】 Stable Diffusion(SD)原理详解与ComfyUI使用 2

Stable Diffusion(SD)原理详解与ComfyUI使用 Stable Diffusion(SD)原理详解与ComfyUI使用1. SD整体结构2. Clip(文本编码器)3. Unit(生成模型)4. VAE(变分自编码器&#…...

【学习笔记】无人机系统(UAS)的连接、识别和跟踪(七)-广播远程识别码(Broadcast Remote ID)

目录 引言 5.5 广播远程识别码(Broadcast Remote ID) 5.5.1 使用PC5的广播远程识别码 5.5.2 使用MBS的广播远程识别码 引言 3GPP TS 23.256 技术规范,主要定义了3GPP系统对无人机(UAV)的连接性、身份识别、跟踪及…...

VMware 虚拟机 ping 不通原因排查

目录 一、检查网络 二、重启虚拟机网络 因为最近遇到了一个比较奇怪的 ping 不通虚拟机的事,在此过程中,检查了很多的设置,故而写一篇文章记录下,如有 VMware 虚拟机 ping 不通可以尝试本文的排查方式。 下面以 VMware 虚拟机为…...

websocket状态机

websocket突破了HTTP协议单向性的缺陷,基于HTTP协议构建了双向通信的通道,使服务端可以主动推送数据到前端,解决了前端不断轮询后台才能获取后端数据的问题,所以在小程序和H5应用中被广泛使用。本文主要集合报文分析对于websocket…...

JCR一区级 | Matlab实现CPO-Transformer-LSTM多变量回归预测【2024新算法】

JCR一区级 | Matlab实现CPO-Transformer-LSTM多变量回归预测【2024新算法】 目录 JCR一区级 | Matlab实现CPO-Transformer-LSTM多变量回归预测【2024新算法】效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.【JCR一区级】Matlab实现CPO-Transformer-LSTM多变量回归预测…...

力扣3226 使两个整数相等的位更改次数

写的代码&#xff1a; class Solution { public:string cc(int num){string res"";while(num>0){int rnum % 2;resstatic_cast<char>(48r)res;num/2;}return res;}int minChanges(int n, int k) {int res0;string n2cc(n);string k2cc(k);int n_sizen2.siz…...

VLAN 划分案例详解

vlan 的应用在网络项目中是非常广泛的&#xff0c;基本上大部分的项目都需要划分 vlan&#xff0c;这里从基础的 vlan 的知识开始&#xff0c;了解 vlan 的划分原理。 为什么需要 vlan&#xff1a; 1、什么是 VLAN&#xff1f; VLAN&#xff08;Virtual LAN&#xff09;&…...

[技术总结] C++ 使用经验

const 和 constexpr 有什么区别. const 一般是设置一个只读的属性, 在运行时还有可能通过cast变成一个可修改的. 但是constexpr是告诉编译器这就是一个常亮, 在编译时就可以计算出来然后进行替换.static 修饰的成员函数 & 成员变量 static 修饰的成员函数只能访问 static 修…...

音频数据集

1 多语言 Mozilla Common Voice 下载地址&#xff1a;https://voice.mozilla.org/data 时长&#xff1a;1965小时&#xff08;目前为止&#xff09; 最早2017年发布&#xff0c;持续更新&#xff0c;该基金会表示&#xff0c;通过 Common Voice 网站和移动应用&#xff0c;他们…...

Java | Leetcode Java题解之第268题丢失的数字

题目&#xff1a; 题解&#xff1a; class Solution {public int missingNumber(int[] nums) {int n nums.length;int total n * (n 1) / 2;int arrSum 0;for (int i 0; i < n; i) {arrSum nums[i];}return total - arrSum;} }...

指针!!C语言(第二篇)

目录 一. 数组名的理解 二. 一维数组传参的本质 三. 冒泡排序法 四. 二级指针与指针数组 五. 字符指针变量与数组指针 一. 数组名的理解 在我们对指针有了初步的理解之外&#xff0c;今天我们来掌握一些新的知识就是数组与指针&#xff0c;第一个对数组名的了解&#xff…...

AIGC-ToonCrafter: Generative Cartoon Interpolation

论文:https://arxiv.org/pdf/2405.17933 代码:https://doubiiu.github.io/projects/ToonCrafter 给定首尾帧&#xff0c;生成逼真生动的动画 MOTIVATION Traditional methods which implicitly assume linear motion and the absence of complicated phenomena like disoccl…...

牛奶供应(三)

一个字贪&#xff0c;第一天&#xff0c;只能选择制作方式&#xff0c;后面的每一天&#xff0c;在<今天制作>与<前期存储>之间取更优解 例如样例&#xff1a;100 5&#xff0c;200 5&#xff0c;90 20&#xff0c;存储成本为10 第1天&#xff1a; 一定是制作&…...

首批通过 | 百度通过中国信通院H5端人脸识别安全能力评估工作

2024年5月&#xff0c;中国信息通信研究院人工智能研究所依托中国人工智能产业发展联盟安全治理委员会&#xff08;AIIA&#xff09;、“可信人脸应用守护计划”及多家企业代表共同开展《H5端人脸识别线上身份认证安全能力要求及评估方法》的编制工作&#xff0c;并基于该方法开…...

三维GIS开发cesium智慧地铁教程(5)Cesium相机控制

一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点&#xff1a; 路径验证&#xff1a;确保相对路径.…...

C++ 基础特性深度解析

目录 引言 一、命名空间&#xff08;namespace&#xff09; C 中的命名空间​ 与 C 语言的对比​ 二、缺省参数​ C 中的缺省参数​ 与 C 语言的对比​ 三、引用&#xff08;reference&#xff09;​ C 中的引用​ 与 C 语言的对比​ 四、inline&#xff08;内联函数…...

ETLCloud可能遇到的问题有哪些?常见坑位解析

数据集成平台ETLCloud&#xff0c;主要用于支持数据的抽取&#xff08;Extract&#xff09;、转换&#xff08;Transform&#xff09;和加载&#xff08;Load&#xff09;过程。提供了一个简洁直观的界面&#xff0c;以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)

宇树机器人多姿态起立控制强化学习框架论文解析 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架&#xff08;一&#xff09; 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...

Spring数据访问模块设计

前面我们已经完成了IoC和web模块的设计&#xff0c;聪明的码友立马就知道了&#xff0c;该到数据访问模块了&#xff0c;要不就这俩玩个6啊&#xff0c;查库势在必行&#xff0c;至此&#xff0c;它来了。 一、核心设计理念 1、痛点在哪 应用离不开数据&#xff08;数据库、No…...

是否存在路径(FIFOBB算法)

题目描述 一个具有 n 个顶点e条边的无向图&#xff0c;该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序&#xff0c;确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数&#xff0c;分别表示n 和 e 的值&#xff08;1…...

C# 求圆面积的程序(Program to find area of a circle)

给定半径r&#xff0c;求圆的面积。圆的面积应精确到小数点后5位。 例子&#xff1a; 输入&#xff1a;r 5 输出&#xff1a;78.53982 解释&#xff1a;由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982&#xff0c;因为我们只保留小数点后 5 位数字。 输…...

关于uniapp展示PDF的解决方案

在 UniApp 的 H5 环境中使用 pdf-vue3 组件可以实现完整的 PDF 预览功能。以下是详细实现步骤和注意事项&#xff1a; 一、安装依赖 安装 pdf-vue3 和 PDF.js 核心库&#xff1a; npm install pdf-vue3 pdfjs-dist二、基本使用示例 <template><view class"con…...

「全栈技术解析」推客小程序系统开发:从架构设计到裂变增长的完整解决方案

在移动互联网营销竞争白热化的当下&#xff0c;推客小程序系统凭借其裂变传播、精准营销等特性&#xff0c;成为企业抢占市场的利器。本文将深度解析推客小程序系统开发的核心技术与实现路径&#xff0c;助力开发者打造具有市场竞争力的营销工具。​ 一、系统核心功能架构&…...

stm32wle5 lpuart DMA数据不接收

配置波特率9600时&#xff0c;需要使用外部低速晶振...