当前位置: 首页 > news >正文

【机器学习框架TensorFlow和PyTorch】基本使用指南

机器学习框架TensorFlow和PyTorch:基本使用指南

目录

  1. 引言
  2. TensorFlow概述
    • TensorFlow简介
    • TensorFlow的基本使用
  3. PyTorch概述
    • PyTorch简介
    • PyTorch的基本使用
  4. TensorFlow和PyTorch的对比
  5. 结论

引言

随着深度学习的快速发展,机器学习框架在实际应用中起到了重要作用。TensorFlow和PyTorch是目前最受欢迎的两大机器学习框架,它们各具特色并广泛应用于各类深度学习任务。本文将详细介绍TensorFlow和PyTorch的基本使用方法,帮助读者快速上手这两大框架。


TensorFlow概述

TensorFlow简介

TensorFlow是由Google开发的一个开源机器学习框架,具有强大的计算能力和灵活的模型构建方式。它支持分布式计算,能够高效处理大规模数据。

TensorFlow的基本使用

安装

使用pip安装TensorFlow:

pip install tensorflow
构建并训练一个简单的神经网络

以下示例展示了如何使用TensorFlow构建并训练一个简单的神经网络来进行手写数字识别任务:

import tensorflow as tf
from tensorflow.keras import layers, models
from tensorflow.keras.datasets import mnist
from tensorflow.keras.utils import to_categorical# 加载数据
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()
train_images = train_images.reshape((60000, 28, 28, 1)).astype('float32') / 255
test_images = test_images.reshape((10000, 28, 28, 1)).astype('float32') / 255
train_labels = to_categorical(train_labels)
test_labels = to_categorical(test_labels)# 构建模型
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))# 编译模型
model.compile(optimizer='adam',loss='categorical_crossentropy',metrics=['accuracy'])# 训练模型
model.fit(train_images, train_labels, epochs=5, batch_size=64, validation_split=0.2)# 评估模型
test_loss, test_acc = model.evaluate(test_images, test_labels)
print(f'Test accuracy: {test_acc}')

PyTorch概述

PyTorch简介

PyTorch是由Facebook开发的一个开源机器学习框架,以其灵活性和易用性受到广泛欢迎。PyTorch采用动态图计算,使得模型构建和调试更加方便。

PyTorch的基本使用

安装

使用pip安装PyTorch:

pip install torch torchvision
构建并训练一个简单的神经网络

以下示例展示了如何使用PyTorch构建并训练一个简单的神经网络来进行手写数字识别任务:

import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms# 数据预处理
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))])# 加载数据
trainset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True)
testset = torchvision.datasets.MNIST(root='./data', train=False, download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=64, shuffle=False)# 构建模型
class Net(nn.Module):def __init__(self):super(Net, self).__init__()self.conv1 = nn.Conv2d(1, 32, 3, 1)self.conv2 = nn.Conv2d(32, 64, 3, 1)self.fc1 = nn.Linear(9216, 128)self.fc2 = nn.Linear(128, 10)def forward(self, x):x = nn.functional.relu(self.conv1(x))x = nn.functional.max_pool2d(x, 2, 2)x = nn.functional.relu(self.conv2(x))x = nn.functional.max_pool2d(x, 2, 2)x = torch.flatten(x, 1)x = nn.functional.relu(self.fc1(x))x = self.fc2(x)return nn.functional.log_softmax(x, dim=1)model = Net()# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)# 训练模型
for epoch in range(5):running_loss = 0.0for images, labels in trainloader:optimizer.zero_grad()outputs = model(images)loss = criterion(outputs, labels)loss.backward()optimizer.step()running_loss += loss.item()print(f'Epoch {epoch+1}, Loss: {running_loss/len(trainloader)}')# 评估模型
correct = 0
total = 0
with torch.no_grad():for images, labels in testloader:outputs = model(images)_, predicted = torch.max(outputs.data, 1)total += labels.size(0)correct += (predicted == labels).sum().item()print(f'Test accuracy: {correct / total}')

TensorFlow和PyTorch的对比

易用性

  • TensorFlow:适合工业级应用,具有丰富的工具和资源,但学习曲线相对较陡。
  • PyTorch:采用动态图计算,代码更简洁易懂,适合研究和快速原型开发。

生态系统

  • TensorFlow:拥有完整的生态系统,包括TensorFlow Extended(TFX)、TensorFlow Lite和TensorFlow Serving等。
  • PyTorch:集成了强大的视觉和文本处理库,如torchvision和torchtext,并且与Hugging Face的Transformers库无缝结合。

性能

  • TensorFlow:在大规模分布式训练中表现优异,支持TPU加速。
  • PyTorch:在小规模模型和研究项目中更具优势,支持动态调整和调试。

结论

TensorFlow和PyTorch作为当前最流行的两大机器学习框架,各具特色且应用广泛。通过本文的介绍,读者可以了解到这两个框架的基本使用方法,并能够根据具体需求选择适合的框架。无论是工业级应用还是研究项目,TensorFlow和PyTorch都能够提供强大的支持,帮助我们高效地进行机器学习任务。


通过对TensorFlow和PyTorch的深入探讨,本文希望读者能够充分利用这两大框架的优势,实现机器学习的高效开发和应用,提升数据处理和分析能力。

相关文章:

【机器学习框架TensorFlow和PyTorch】基本使用指南

机器学习框架TensorFlow和PyTorch:基本使用指南 目录 引言TensorFlow概述 TensorFlow简介TensorFlow的基本使用 PyTorch概述 PyTorch简介PyTorch的基本使用 TensorFlow和PyTorch的对比结论 引言 随着深度学习的快速发展,机器学习框架在实际应用中起到…...

matlab 中的methods(Access = protected) 是什么意思

gpt版本 在 MATLAB 中,methods 是用于定义类方法的一部分。(Access protected) 是一种访问控制修饰符,它限制了方法的访问权限。具体来说,当你在类定义中使用 methods(Access protected) 时,你是在定义只有类本身及其子类可以访…...

【漏洞复现】Netgear WN604 downloadFile.php 信息泄露漏洞(CVE-2024-6646)

0x01 产品简介 NETGEAR WN604是一款由NETGEAR(网件)公司生产的无线接入器(或无线路由器)提供Wi-Fi保护协议(WPA2-PSK, WPA-PSK),以及有线等效加密(WEP)64位、128位和152…...

图像处理 -- ISP调优(tuning)的步骤整理

ISP调优流程培训文档 1. 硬件准备 选择合适的图像传感器:根据项目需求选择合适的传感器型号。搭建测试环境:包括测试板、光源、色彩卡和分辨率卡等。 2. 初始设置 寄存器配置:初始化传感器的寄存器设置,包括曝光、增益、白平衡…...

【中项】系统集成项目管理工程师-第4章 信息系统架构-4.2系统架构

前言:系统集成项目管理工程师专业,现分享一些教材知识点。觉得文章还不错的喜欢点赞收藏的同时帮忙点点关注。 软考同样是国家人社部和工信部组织的国家级考试,全称为“全国计算机与软件专业技术资格(水平)考试”&…...

node.js中nodemon : 无法加载和使用问题,这是由于windows安全策略影起的按如下操作即可

1、用管理员权限打开vscode 2、文件终端中打开,输入 Set-ExecutionPolicy -Scope CurrentUser 3、再输入RemoteSigned 4、使用get-ExecutionPolicy查看权限,可以看到变为了RemoteSigned 重启问题解决...

【SD】 Stable Diffusion(SD)原理详解与ComfyUI使用 2

Stable Diffusion(SD)原理详解与ComfyUI使用 Stable Diffusion(SD)原理详解与ComfyUI使用1. SD整体结构2. Clip(文本编码器)3. Unit(生成模型)4. VAE(变分自编码器&#…...

【学习笔记】无人机系统(UAS)的连接、识别和跟踪(七)-广播远程识别码(Broadcast Remote ID)

目录 引言 5.5 广播远程识别码(Broadcast Remote ID) 5.5.1 使用PC5的广播远程识别码 5.5.2 使用MBS的广播远程识别码 引言 3GPP TS 23.256 技术规范,主要定义了3GPP系统对无人机(UAV)的连接性、身份识别、跟踪及…...

VMware 虚拟机 ping 不通原因排查

目录 一、检查网络 二、重启虚拟机网络 因为最近遇到了一个比较奇怪的 ping 不通虚拟机的事,在此过程中,检查了很多的设置,故而写一篇文章记录下,如有 VMware 虚拟机 ping 不通可以尝试本文的排查方式。 下面以 VMware 虚拟机为…...

websocket状态机

websocket突破了HTTP协议单向性的缺陷,基于HTTP协议构建了双向通信的通道,使服务端可以主动推送数据到前端,解决了前端不断轮询后台才能获取后端数据的问题,所以在小程序和H5应用中被广泛使用。本文主要集合报文分析对于websocket…...

JCR一区级 | Matlab实现CPO-Transformer-LSTM多变量回归预测【2024新算法】

JCR一区级 | Matlab实现CPO-Transformer-LSTM多变量回归预测【2024新算法】 目录 JCR一区级 | Matlab实现CPO-Transformer-LSTM多变量回归预测【2024新算法】效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.【JCR一区级】Matlab实现CPO-Transformer-LSTM多变量回归预测…...

力扣3226 使两个整数相等的位更改次数

写的代码&#xff1a; class Solution { public:string cc(int num){string res"";while(num>0){int rnum % 2;resstatic_cast<char>(48r)res;num/2;}return res;}int minChanges(int n, int k) {int res0;string n2cc(n);string k2cc(k);int n_sizen2.siz…...

VLAN 划分案例详解

vlan 的应用在网络项目中是非常广泛的&#xff0c;基本上大部分的项目都需要划分 vlan&#xff0c;这里从基础的 vlan 的知识开始&#xff0c;了解 vlan 的划分原理。 为什么需要 vlan&#xff1a; 1、什么是 VLAN&#xff1f; VLAN&#xff08;Virtual LAN&#xff09;&…...

[技术总结] C++ 使用经验

const 和 constexpr 有什么区别. const 一般是设置一个只读的属性, 在运行时还有可能通过cast变成一个可修改的. 但是constexpr是告诉编译器这就是一个常亮, 在编译时就可以计算出来然后进行替换.static 修饰的成员函数 & 成员变量 static 修饰的成员函数只能访问 static 修…...

音频数据集

1 多语言 Mozilla Common Voice 下载地址&#xff1a;https://voice.mozilla.org/data 时长&#xff1a;1965小时&#xff08;目前为止&#xff09; 最早2017年发布&#xff0c;持续更新&#xff0c;该基金会表示&#xff0c;通过 Common Voice 网站和移动应用&#xff0c;他们…...

Java | Leetcode Java题解之第268题丢失的数字

题目&#xff1a; 题解&#xff1a; class Solution {public int missingNumber(int[] nums) {int n nums.length;int total n * (n 1) / 2;int arrSum 0;for (int i 0; i < n; i) {arrSum nums[i];}return total - arrSum;} }...

指针!!C语言(第二篇)

目录 一. 数组名的理解 二. 一维数组传参的本质 三. 冒泡排序法 四. 二级指针与指针数组 五. 字符指针变量与数组指针 一. 数组名的理解 在我们对指针有了初步的理解之外&#xff0c;今天我们来掌握一些新的知识就是数组与指针&#xff0c;第一个对数组名的了解&#xff…...

AIGC-ToonCrafter: Generative Cartoon Interpolation

论文:https://arxiv.org/pdf/2405.17933 代码:https://doubiiu.github.io/projects/ToonCrafter 给定首尾帧&#xff0c;生成逼真生动的动画 MOTIVATION Traditional methods which implicitly assume linear motion and the absence of complicated phenomena like disoccl…...

牛奶供应(三)

一个字贪&#xff0c;第一天&#xff0c;只能选择制作方式&#xff0c;后面的每一天&#xff0c;在<今天制作>与<前期存储>之间取更优解 例如样例&#xff1a;100 5&#xff0c;200 5&#xff0c;90 20&#xff0c;存储成本为10 第1天&#xff1a; 一定是制作&…...

首批通过 | 百度通过中国信通院H5端人脸识别安全能力评估工作

2024年5月&#xff0c;中国信息通信研究院人工智能研究所依托中国人工智能产业发展联盟安全治理委员会&#xff08;AIIA&#xff09;、“可信人脸应用守护计划”及多家企业代表共同开展《H5端人脸识别线上身份认证安全能力要求及评估方法》的编制工作&#xff0c;并基于该方法开…...

JVM---对象是否存活及被引用的状态

1.如何判断对象是否存活 1.1 引用计数算法 概念&#xff1a;在对象头部增加一个引用计数器,每当有一个地方引用它时&#xff0c;计数器值就加一&#xff1b;当引用失效时&#xff0c;计数器值就减一&#xff1b;任何时刻计数器为零的对象就是不可能再被使用的。 优点&#xff1…...

科研绘图系列:R语言分割小提琴图(Split-violin)

介绍 分割小提琴图(Split-violin plot)是一种数据可视化工具,它结合了小提琴图(violin plot)和箱线图(box plot)的特点。小提琴图是一种展示数据分布的图形,它通过在箱线图的两侧添加曲线来表示数据的密度分布,曲线的宽度表示数据点的密度。而分割小提琴图则是将小提…...

WEB前端09-前端服务器搭建(Node.js/nvm/npm)

前端服务器的搭建 在本文中&#xff0c;我们将介绍如何安装和配置 nvm&#xff08;Node Version Manager&#xff09;以方便切换不同版本的 Node.js&#xff0c;以及如何设置 npm&#xff08;Node Package Manager&#xff09;使用国内镜像&#xff0c;并搭建一个简单的前端服…...

ASP.NET Core在启动过程中使用数据库实例的几种方式

ASP.NET Core项目启动过程中若要调用SqlSugarClient实例操作数据库数据&#xff08;假设操作函数如下&#xff09;&#xff0c;特此记录以下几种方式&#xff1a; public class PublicDataBuffer {public static List<EnvironmentRecord> DataBuffer new List<Envir…...

AndroidStudio 编辑xml布局文件卡死问题解决

之前项目编写的都是正常&#xff0c;升级AndroidStudio后编辑布局文件就卡死&#xff0c;还以为是AndroidStudio文件。 其实不然&#xff0c;我给整个项目增加了版权声明。所以全部跟新后&#xff0c;布局文件也增加了版权声明。估计AndroidStudio在 解析布局文件时候因为有版…...

使用 PVE 自签 CA 证书签发新证书

前言 PVE 安装时会自动创建一个有效期 10 年的 CA 证书, 我们可以利用这个 CA 证书给虚拟机中的 Web 应用签发新的 TLS 证书用于提供 HTTPS 服务. 下面以 PVE 虚拟机中通过 Docker 跑的一个 雷池 应用为例进行演示. PVE 证书位置 官方文档: https://pve.proxmox.com/wiki/Pr…...

ubuntu 22.04安装Eigen

1 安装 git clone https://gitlab.com/libeigen/eigen.gitcd eigen mkdir build cd build cmake ..sudo make install... -- Installing: /usr/local/include/eigen3/unsupported/Eigen/CXX11/src/TensorSymmetry -- Installing: /usr/local/include/eigen3/unsupported/Eige…...

vue使用audio 音频实现播放与关闭(可用于收到消息给提示音效)

这次项目中因为对接了即时通讯 IM&#xff0c;有个需求就是收到消息需要有个提示音效&#xff0c;所以这里就想到了用HTML5 提供的Audio 标签&#xff0c;用起来也是很方便&#xff0c;首先让产品给你个提示音效&#xff0c;然后你放在项目中&#xff0c;使用Audio 标签&#x…...

STM32 产生Hard Fault 调试方法

STM32 产生hard-fault 调试方法 需求 当STM32 产生Hard Fault的时候我们希望可以打印出一些重要的寄存器信息&#xff0c;然后定位代码出错的地方。 参考 https://github.com/ferenc-nemeth/arm-hard-fault-handler 原理 STM32代码运行的时候一般在是main函数while(1)中循…...

java-selenium 截取界面验证码图片并对图片文本进行识别

参考链接 1、需要下载Tesseract工具并配置环境变量&#xff0c;步骤如下 Tesseract-OCR 下载安装和使用_tesseract-ocr下载-CSDN博客 2、需要在IDEA中导入tess4j 包&#xff1b;在pom.xml文件中输入如下内容 <!--导入Tesseract 用于识别验证码--><dependency>&l…...

wordpress网站如何搬家/seo系统培训哪家好

1.首先简单说说wifidog认证的过程客户端首次连接到wifi后&#xff0c;浏览器请求将会被重定向到&#xff1a;login/?gw_address%s&gw_port%d&gw_id%s&url%s验证通过后&#xff0c;客户端被重定向到网关&#xff0c;url格式如下&#xff1a;http://网关地址:网关端…...

高端网站制作建设/自助建站网站哪个好

序言&#xff1a;各位同学们好&#xff0c;今天给大家带来一例恐怖逼真滴血文字效果的制作教程&#xff0c;本人比较喜欢看恐怖游戏&#xff0c;是看不是玩&#xff0c;然后就突发奇想地做了这件作品&#xff0c;最后的效果我很喜欢&#xff0c;而且制作起来难度并不大&#xf…...

wordpress网仿站/刷关键词排名系统

Dev GridControl 小结 时间 2014-03-26 19:24:01 CSDN博客原文 http://blog.csdn.net/jiankunking/article/details/22202753主题 .Net//删除记录 this.gridView1.DeleteSelectedRows(); //添加记录 this.gridView1.AddNewRow(); 1、确认当前正在编辑的单元格的输入 this.gri…...

防制网站怎么做/百度推广和优化有什么区别

实地集团2006年从广州出发&#xff0c;始终致力于将科技与人文连接&#xff0c;重新构建人类对于自身与居住空间关系的认知。目前&#xff0c;实地集团已经发展成为一家为用户提供贯穿全生命周期智慧人居解决方案的综合性企业。实地集团认为&#xff0c;智慧人居绝不是冰冷数据…...

邵东网站开发/网站推广和网站优化

【任务】编制一个菜单程序&#xff0c;在屏幕上显示如下信息&#xff1a; MENU1. FILE2. EDIT3. COMPILE4. RUN0. QUITplease choose one of 0~4: 选择1-4时&#xff0c;执行相应功能&#xff08;简单起见&#xff0c;输出一句话即可&#xff09;&#xff0c;选择0时&#xff0…...

长沙网站设计我选刻/seo推广软件

区块链作为一个正在发展的崭新技术&#xff0c;对于大多数而言都是一个陌生的词汇&#xff0c;那么就会产生大多数人都不够信任这一现象的结果。对此&#xff0c;区块链领域的专家徐明星表示&#xff1a;区块链实现的是“基于代码的信任”。 区块链究竟是什么&#xff0c;似乎没…...