【机器学习框架TensorFlow和PyTorch】基本使用指南
机器学习框架TensorFlow和PyTorch:基本使用指南
目录
- 引言
- TensorFlow概述
- TensorFlow简介
- TensorFlow的基本使用
- PyTorch概述
- PyTorch简介
- PyTorch的基本使用
- TensorFlow和PyTorch的对比
- 结论
引言
随着深度学习的快速发展,机器学习框架在实际应用中起到了重要作用。TensorFlow和PyTorch是目前最受欢迎的两大机器学习框架,它们各具特色并广泛应用于各类深度学习任务。本文将详细介绍TensorFlow和PyTorch的基本使用方法,帮助读者快速上手这两大框架。
TensorFlow概述
TensorFlow简介
TensorFlow是由Google开发的一个开源机器学习框架,具有强大的计算能力和灵活的模型构建方式。它支持分布式计算,能够高效处理大规模数据。
TensorFlow的基本使用
安装
使用pip安装TensorFlow:
pip install tensorflow
构建并训练一个简单的神经网络
以下示例展示了如何使用TensorFlow构建并训练一个简单的神经网络来进行手写数字识别任务:
import tensorflow as tf
from tensorflow.keras import layers, models
from tensorflow.keras.datasets import mnist
from tensorflow.keras.utils import to_categorical# 加载数据
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()
train_images = train_images.reshape((60000, 28, 28, 1)).astype('float32') / 255
test_images = test_images.reshape((10000, 28, 28, 1)).astype('float32') / 255
train_labels = to_categorical(train_labels)
test_labels = to_categorical(test_labels)# 构建模型
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))# 编译模型
model.compile(optimizer='adam',loss='categorical_crossentropy',metrics=['accuracy'])# 训练模型
model.fit(train_images, train_labels, epochs=5, batch_size=64, validation_split=0.2)# 评估模型
test_loss, test_acc = model.evaluate(test_images, test_labels)
print(f'Test accuracy: {test_acc}')
PyTorch概述
PyTorch简介
PyTorch是由Facebook开发的一个开源机器学习框架,以其灵活性和易用性受到广泛欢迎。PyTorch采用动态图计算,使得模型构建和调试更加方便。
PyTorch的基本使用
安装
使用pip安装PyTorch:
pip install torch torchvision
构建并训练一个简单的神经网络
以下示例展示了如何使用PyTorch构建并训练一个简单的神经网络来进行手写数字识别任务:
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms# 数据预处理
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))])# 加载数据
trainset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True)
testset = torchvision.datasets.MNIST(root='./data', train=False, download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=64, shuffle=False)# 构建模型
class Net(nn.Module):def __init__(self):super(Net, self).__init__()self.conv1 = nn.Conv2d(1, 32, 3, 1)self.conv2 = nn.Conv2d(32, 64, 3, 1)self.fc1 = nn.Linear(9216, 128)self.fc2 = nn.Linear(128, 10)def forward(self, x):x = nn.functional.relu(self.conv1(x))x = nn.functional.max_pool2d(x, 2, 2)x = nn.functional.relu(self.conv2(x))x = nn.functional.max_pool2d(x, 2, 2)x = torch.flatten(x, 1)x = nn.functional.relu(self.fc1(x))x = self.fc2(x)return nn.functional.log_softmax(x, dim=1)model = Net()# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)# 训练模型
for epoch in range(5):running_loss = 0.0for images, labels in trainloader:optimizer.zero_grad()outputs = model(images)loss = criterion(outputs, labels)loss.backward()optimizer.step()running_loss += loss.item()print(f'Epoch {epoch+1}, Loss: {running_loss/len(trainloader)}')# 评估模型
correct = 0
total = 0
with torch.no_grad():for images, labels in testloader:outputs = model(images)_, predicted = torch.max(outputs.data, 1)total += labels.size(0)correct += (predicted == labels).sum().item()print(f'Test accuracy: {correct / total}')
TensorFlow和PyTorch的对比
易用性
- TensorFlow:适合工业级应用,具有丰富的工具和资源,但学习曲线相对较陡。
- PyTorch:采用动态图计算,代码更简洁易懂,适合研究和快速原型开发。
生态系统
- TensorFlow:拥有完整的生态系统,包括TensorFlow Extended(TFX)、TensorFlow Lite和TensorFlow Serving等。
- PyTorch:集成了强大的视觉和文本处理库,如torchvision和torchtext,并且与Hugging Face的Transformers库无缝结合。
性能
- TensorFlow:在大规模分布式训练中表现优异,支持TPU加速。
- PyTorch:在小规模模型和研究项目中更具优势,支持动态调整和调试。
结论
TensorFlow和PyTorch作为当前最流行的两大机器学习框架,各具特色且应用广泛。通过本文的介绍,读者可以了解到这两个框架的基本使用方法,并能够根据具体需求选择适合的框架。无论是工业级应用还是研究项目,TensorFlow和PyTorch都能够提供强大的支持,帮助我们高效地进行机器学习任务。
通过对TensorFlow和PyTorch的深入探讨,本文希望读者能够充分利用这两大框架的优势,实现机器学习的高效开发和应用,提升数据处理和分析能力。
相关文章:
【机器学习框架TensorFlow和PyTorch】基本使用指南
机器学习框架TensorFlow和PyTorch:基本使用指南 目录 引言TensorFlow概述 TensorFlow简介TensorFlow的基本使用 PyTorch概述 PyTorch简介PyTorch的基本使用 TensorFlow和PyTorch的对比结论 引言 随着深度学习的快速发展,机器学习框架在实际应用中起到…...
matlab 中的methods(Access = protected) 是什么意思
gpt版本 在 MATLAB 中,methods 是用于定义类方法的一部分。(Access protected) 是一种访问控制修饰符,它限制了方法的访问权限。具体来说,当你在类定义中使用 methods(Access protected) 时,你是在定义只有类本身及其子类可以访…...
【漏洞复现】Netgear WN604 downloadFile.php 信息泄露漏洞(CVE-2024-6646)
0x01 产品简介 NETGEAR WN604是一款由NETGEAR(网件)公司生产的无线接入器(或无线路由器)提供Wi-Fi保护协议(WPA2-PSK, WPA-PSK),以及有线等效加密(WEP)64位、128位和152…...
图像处理 -- ISP调优(tuning)的步骤整理
ISP调优流程培训文档 1. 硬件准备 选择合适的图像传感器:根据项目需求选择合适的传感器型号。搭建测试环境:包括测试板、光源、色彩卡和分辨率卡等。 2. 初始设置 寄存器配置:初始化传感器的寄存器设置,包括曝光、增益、白平衡…...
【中项】系统集成项目管理工程师-第4章 信息系统架构-4.2系统架构
前言:系统集成项目管理工程师专业,现分享一些教材知识点。觉得文章还不错的喜欢点赞收藏的同时帮忙点点关注。 软考同样是国家人社部和工信部组织的国家级考试,全称为“全国计算机与软件专业技术资格(水平)考试”&…...
node.js中nodemon : 无法加载和使用问题,这是由于windows安全策略影起的按如下操作即可
1、用管理员权限打开vscode 2、文件终端中打开,输入 Set-ExecutionPolicy -Scope CurrentUser 3、再输入RemoteSigned 4、使用get-ExecutionPolicy查看权限,可以看到变为了RemoteSigned 重启问题解决...
【SD】 Stable Diffusion(SD)原理详解与ComfyUI使用 2
Stable Diffusion(SD)原理详解与ComfyUI使用 Stable Diffusion(SD)原理详解与ComfyUI使用1. SD整体结构2. Clip(文本编码器)3. Unit(生成模型)4. VAE(变分自编码器&#…...
【学习笔记】无人机系统(UAS)的连接、识别和跟踪(七)-广播远程识别码(Broadcast Remote ID)
目录 引言 5.5 广播远程识别码(Broadcast Remote ID) 5.5.1 使用PC5的广播远程识别码 5.5.2 使用MBS的广播远程识别码 引言 3GPP TS 23.256 技术规范,主要定义了3GPP系统对无人机(UAV)的连接性、身份识别、跟踪及…...
VMware 虚拟机 ping 不通原因排查
目录 一、检查网络 二、重启虚拟机网络 因为最近遇到了一个比较奇怪的 ping 不通虚拟机的事,在此过程中,检查了很多的设置,故而写一篇文章记录下,如有 VMware 虚拟机 ping 不通可以尝试本文的排查方式。 下面以 VMware 虚拟机为…...
websocket状态机
websocket突破了HTTP协议单向性的缺陷,基于HTTP协议构建了双向通信的通道,使服务端可以主动推送数据到前端,解决了前端不断轮询后台才能获取后端数据的问题,所以在小程序和H5应用中被广泛使用。本文主要集合报文分析对于websocket…...
JCR一区级 | Matlab实现CPO-Transformer-LSTM多变量回归预测【2024新算法】
JCR一区级 | Matlab实现CPO-Transformer-LSTM多变量回归预测【2024新算法】 目录 JCR一区级 | Matlab实现CPO-Transformer-LSTM多变量回归预测【2024新算法】效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.【JCR一区级】Matlab实现CPO-Transformer-LSTM多变量回归预测…...
力扣3226 使两个整数相等的位更改次数
写的代码: class Solution { public:string cc(int num){string res"";while(num>0){int rnum % 2;resstatic_cast<char>(48r)res;num/2;}return res;}int minChanges(int n, int k) {int res0;string n2cc(n);string k2cc(k);int n_sizen2.siz…...
VLAN 划分案例详解
vlan 的应用在网络项目中是非常广泛的,基本上大部分的项目都需要划分 vlan,这里从基础的 vlan 的知识开始,了解 vlan 的划分原理。 为什么需要 vlan: 1、什么是 VLAN? VLAN(Virtual LAN)&…...
[技术总结] C++ 使用经验
const 和 constexpr 有什么区别. const 一般是设置一个只读的属性, 在运行时还有可能通过cast变成一个可修改的. 但是constexpr是告诉编译器这就是一个常亮, 在编译时就可以计算出来然后进行替换.static 修饰的成员函数 & 成员变量 static 修饰的成员函数只能访问 static 修…...
音频数据集
1 多语言 Mozilla Common Voice 下载地址:https://voice.mozilla.org/data 时长:1965小时(目前为止) 最早2017年发布,持续更新,该基金会表示,通过 Common Voice 网站和移动应用,他们…...
Java | Leetcode Java题解之第268题丢失的数字
题目: 题解: class Solution {public int missingNumber(int[] nums) {int n nums.length;int total n * (n 1) / 2;int arrSum 0;for (int i 0; i < n; i) {arrSum nums[i];}return total - arrSum;} }...
指针!!C语言(第二篇)
目录 一. 数组名的理解 二. 一维数组传参的本质 三. 冒泡排序法 四. 二级指针与指针数组 五. 字符指针变量与数组指针 一. 数组名的理解 在我们对指针有了初步的理解之外,今天我们来掌握一些新的知识就是数组与指针,第一个对数组名的了解ÿ…...
AIGC-ToonCrafter: Generative Cartoon Interpolation
论文:https://arxiv.org/pdf/2405.17933 代码:https://doubiiu.github.io/projects/ToonCrafter 给定首尾帧,生成逼真生动的动画 MOTIVATION Traditional methods which implicitly assume linear motion and the absence of complicated phenomena like disoccl…...
牛奶供应(三)
一个字贪,第一天,只能选择制作方式,后面的每一天,在<今天制作>与<前期存储>之间取更优解 例如样例:100 5,200 5,90 20,存储成本为10 第1天: 一定是制作&…...
首批通过 | 百度通过中国信通院H5端人脸识别安全能力评估工作
2024年5月,中国信息通信研究院人工智能研究所依托中国人工智能产业发展联盟安全治理委员会(AIIA)、“可信人脸应用守护计划”及多家企业代表共同开展《H5端人脸识别线上身份认证安全能力要求及评估方法》的编制工作,并基于该方法开…...
Linux相关概念和易错知识点(42)(TCP的连接管理、可靠性、面临复杂网络的处理)
目录 1.TCP的连接管理机制(1)三次握手①握手过程②对握手过程的理解 (2)四次挥手(3)握手和挥手的触发(4)状态切换①挥手过程中状态的切换②握手过程中状态的切换 2.TCP的可靠性&…...
[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?
论文网址:pdf 英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...
五年级数学知识边界总结思考-下册
目录 一、背景二、过程1.观察物体小学五年级下册“观察物体”知识点详解:由来、作用与意义**一、知识点核心内容****二、知识点的由来:从生活实践到数学抽象****三、知识的作用:解决实际问题的工具****四、学习的意义:培养核心素养…...
镜像里切换为普通用户
如果你登录远程虚拟机默认就是 root 用户,但你不希望用 root 权限运行 ns-3(这是对的,ns3 工具会拒绝 root),你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案:创建非 roo…...
tree 树组件大数据卡顿问题优化
问题背景 项目中有用到树组件用来做文件目录,但是由于这个树组件的节点越来越多,导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多,导致的浏览器卡顿,这里很明显就需要用到虚拟列表的技术&…...
3-11单元格区域边界定位(End属性)学习笔记
返回一个Range 对象,只读。该对象代表包含源区域的区域上端下端左端右端的最后一个单元格。等同于按键 End 向上键(End(xlUp))、End向下键(End(xlDown))、End向左键(End(xlToLeft)End向右键(End(xlToRight)) 注意:它移动的位置必须是相连的有内容的单元格…...
OPENCV形态学基础之二腐蚀
一.腐蚀的原理 (图1) 数学表达式:dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一,腐蚀跟膨胀属于反向操作,膨胀是把图像图像变大,而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...
Java毕业设计:WML信息查询与后端信息发布系统开发
JAVAWML信息查询与后端信息发布系统实现 一、系统概述 本系统基于Java和WML(无线标记语言)技术开发,实现了移动设备上的信息查询与后端信息发布功能。系统采用B/S架构,服务器端使用Java Servlet处理请求,数据库采用MySQL存储信息࿰…...
处理vxe-table 表尾数据是单独一个接口,表格tableData数据更新后,需要点击两下,表尾才是正确的
修改bug思路: 分别把 tabledata 和 表尾相关数据 console.log() 发现 更新数据先后顺序不对 settimeout延迟查询表格接口 ——测试可行 升级↑:async await 等接口返回后再开始下一个接口查询 ________________________________________________________…...
DingDing机器人群消息推送
文章目录 1 新建机器人2 API文档说明3 代码编写 1 新建机器人 点击群设置 下滑到群管理的机器人,点击进入 添加机器人 选择自定义Webhook服务 点击添加 设置安全设置,详见说明文档 成功后,记录Webhook 2 API文档说明 点击设置说明 查看自…...
