当前位置: 首页 > news >正文

【C++】入门知识之 命名空间与输入输出

前言

C语言是结构化和模块化的语言,适合处理较小规模的程序。对于复杂的问题,规模较大的

程序,需要高度的抽象和建模时,C语言则不合适。为了解决软件危机, 20世纪80年代, 计算机

界提出了OOP(object oriented programming:面向对象)思想,支持面向对象的程序设计语言

应运而生。

1982年,Bjarne Stroustrup博士在C语言的基础上引入并扩充了面向对象的概念,发明了一

种新的程序语言。为了表达该语言与C语言的渊源关系,命名为C++。因此:C++是基于C语言而

产生的,它既可以进行C语言的过程化程序设计,又可以进行以抽象数据类型为特点的基于对象的

程序设计,还可以进行面向对象的程序设计

从今天开始我们进入C++的学习,C++从四十年前诞生以来,也是不断的发展着,成为最广泛的编程语言之一。

命名空间

示例

在C/C++中,变量、函数和后面要学到的类都是大量存在的,这些变量、函数和类的名称将都存在于全局作用域中,可能会导致很多冲突。使用命名空间的目的是对标识符的名称进行本地化,以避免命名冲突或名字污染,namespace关键字的出现就是针对这种问题的。

我们在许多的C++程序中都会看到以下的代码,但是有人仔细研究过这是什么意思吗?

#include<iostream>
// std是C++标准库的命名空间名,C++将标准库的定义实现都放到这个命名空间中
using namespace std;

原来这里的namespace就是命名空间的意思,std就是C++的标准库,C++标准库中所有的定义和实现都放在std这个命名空间里,那么命名空间到底是什么意思呢?

#include <stdio.h>
#include <stdlib.h>
int rand = 10;
// C语言没办法解决类似这样的命名冲突问题,所以C++提出了namespace来解决
int main()
{printf("%d\n", rand);
return 0;
}
// 编译后后报错:error C2365: “rand”: 重定义;以前的定义是“函数”

我们来探究一下,来看这段代码,我们定义了一个rand变量,但是在C语言的库中,在<stdlib.h>中有一个rand函数,造成了命名冲突,但是在C++中,提出了命名空间来解决这个问题。

命名空间定义

定义命名空间,需要使用到namespace关键字,后面跟命名空间的名字,然后接一对{}即可,{}

中即为命名空间的成员。

命名空间定义时有有三个特点:

1.命名空间的名字可以为任何的变量名,命名空间中可以定义变量,函数,类型。

// 1. 正常的命名空间定义
namespace tmt
{// 命名空间中可以定义变量/函数/类型int rand = 10;int Add(int left, int right){return left + right;}struct Node{struct Node* next;int val;};
}

2.命名空间可以嵌套使用,在N1内部也可以嵌套N2的命名空间。

//2. 命名空间可以嵌套
// test.cpp
namespace N1
{int a;int b;int Add(int left, int right){return left + right;}namespace N2{int c;int d;int Sub(int left, int right){return left - right;}}
}

3.当在一个工程中,有名称相同的命名空间,会将这些命名空间中的内容合并。

//3. 同一个工程中允许存在多个相同名称的命名空间,编译器最后会合成同一个命名空间中。
// ps:一个工程中的test.h和上面test.cpp中两个N1会被合并成一个
// test.h
namespace N1
{int Mul(int left, int right){return left * right;}
}

命名空间使用

我们学会了命名空间的定义之后,我们来探究一下命名空间是如何使用的吧

namespace tmt
{int a = 1;
}int main()
{printf("%d", a);return 0;
}

我们发现编译器并不认识这个a变量,这时因为a定义在tmt这个命名空间内部,有了自己的作用域,当我们要使用这个变量时,先得来操作这个命名空间。

下边我来介绍三种方式:

  1. 使用作用域限定符来操作

int main()
{printf("%d\n", tmt::a);return 0;    
}

2.使用using将命名空间中某个成员引入

using tmt::a;
int main()
{printf("%d\n", a);return 0;    
}

3.使用using将命名空间名称引入

using namespce tmt;
int main()
{printf("%d\n",a);return 0;    
}

注意事项:

  1. 虽然有三种方式来使用命名空间内的内容,但是在实际的工程中,我们不会选择第三种方式,因为设计命名空间的初衷就是要避免函数名相同造成冲突,但是当我们将整个命名空间引入时,就丧失了隔离的效果,所以在写工程时,尽量不去使用第三种方式。

  1. 在平时的练习中,我们就可以使用三种方式,使用第三种方式比较方便。

C++输入&输出

我们前边学习了C语言,C语言的输入输出必须引入库stdio,输出使用的是printf函数,叫做标准输出函数,而标准输入函数就是scanf函数。我们下来看一下C++是如何输入输出的:

#include<iostream>
// std是C++标准库的命名空间名,C++将标准库的定义实现都放到这个命名空间中
using namespace std;
int main()
{cout<<"Hello world!!!"<<endl;return 0;
}

C++的标准输入输出要引用iostream流,这里就用到了前文介绍的命名空间,只有这样才能使用C++

标准库中的函数。

注意:

1. 使用cout标准输出对象(控制台)cin标准输入对象(键盘)时,必须包含< iostream >头文件以及按命名空间使用方法使用std。

2. cout和cin是全局的流对象,endl是特殊的C++符号,表示换行输出,他们都包含在包<iostream>头文件中。

3. <<是流插入运算符,>>是流提取运算符

4. 使用C++输入输出更方便,不需要像printf/scanf输入输出时那样,需要手动控制格式。C++的输入输出可以自动识别变量类型。

#include <iostream>
using namespace std;
int main()
{int a;double b;char c;// 可以自动识别变量的类型cin>>a;cin>>b>>c;cout<<a<<endl;cout<<b<<" "<<c<<endl;return 0;
}

C语言中使用printf和scanf函数必须指定函数类型,但是使用C++的cout与cin不用指定函数类型,直接输入变量就好了。

// ps:关于cout和cin还有很多更复杂的用法,比如控制浮点数输出精度,控制整形输出进制格式等
等。因为C++兼容C语言的用法,这些又用得不是很多,我们这里就不展开学习了。后续如果有需要,我们再配合文档学习。

相关文章:

【C++】入门知识之 命名空间与输入输出

前言C语言是结构化和模块化的语言&#xff0c;适合处理较小规模的程序。对于复杂的问题&#xff0c;规模较大的程序&#xff0c;需要高度的抽象和建模时&#xff0c;C语言则不合适。为了解决软件危机&#xff0c; 20世纪80年代&#xff0c; 计算机界提出了OOP(object oriented …...

redis持久化的几种方式

一、简介 Redis是一种高级key-value数据库。它跟memcached类似&#xff0c;不过数据可以持久化&#xff0c;而且支持的数据类型很丰富。有字符串&#xff0c;链表&#xff0c;集 合和有序集合。支持在服务器端计算集合的并&#xff0c;交和补集(difference)等&#xff0c;还支持…...

数据持久化层--查询分离

1. 业务场景 1)查询慢。当时工单数据库里面有1000万左右的客服工单时,每次查询时需要关联其他近10个表,一次查询平均花费13秒左右。 2)打开工单慢。工单打开以后需要调用多个接口,分别将用户信息、订单信息以及其他客服创建的单据信息列出来(如退款、赔偿、充值、投诉等…...

一文读懂Js中的this指向

前言 this关键字是一个非常重要的语法点。毫不夸张地说&#xff0c;不理解它的含义&#xff0c;大部分开发任务都无法完成。 简单说&#xff0c;this就是属性或方法“当前”所在的对象。 this.property上面代码中&#xff0c;this就代表property属性当前所在的对象。 下面是…...

零费用、零学习成本,用户快速可自定义json格式

随着物联网的发展&#xff0c;越来越多的设备被连接到互联网&#xff0c;数据量不断增加。这就需要有一种高效的方法来处理传输和处理这些数据。钡铼技术R40B边缘计算路由器&#xff0c;集成4G工业路由器、智能网关、RTU、DTU等产品多合一。支持边缘计算&#xff0c;它可以将计…...

2023年全国最新高校辅导员精选真题及答案25

百分百题库提供高校辅导员考试试题、辅导员考试预测题、高校辅导员考试真题、辅导员证考试题库等&#xff0c;提供在线做题刷题&#xff0c;在线模拟考试&#xff0c;助你考试轻松过关。 101.属于大学教师职业特征的是&#xff08;&#xff09;。 A.教师劳动的复杂性 B.教师…...

二、数据结构-线性表

目录 &#x1f33b;&#x1f33b;一、线性表概述1.1 线性表的基本概念1.2 线性表的顺序存储1.2.1 线性表的基本运算在顺序表上的实现1.2.2 顺序表实现算法的分析1.2.3 单链表类型的定义1.2.4 线性表的基本运算在单链表上的实现1.3 其他运算在单链表上的实现1.3.1 建表1.3.2 删除…...

CGAL 点云上采样

目录一、算法原理1、主要函数2、参数解析二、代码实现三、结果展示一、算法原理 该方法对点集进行逐步上采样&#xff0c;同时根据法向量信息来检测边缘点&#xff0c;需要输入点云具有法线信息。在点云空洞填充和稀疏表面重建中具有较好的应用。 1、主要函数 头文件 #inclu…...

阿里云短信验证码实战

一、创建阿里云短信权限用户 1、登陆阿里云之后我们点击头像&#xff0c;接着点击AccessKey: 2、选择开始使用子用户 &#xff1a; 3、我们先要创建一个用户组&#xff1a; 4、依次点击新建的用户组——授权管理&#xff0c;给用户组授权&#xff0c;开通短信验证码服务…...

Android APP隐私合规检测工具Camille使用

目录一、简介二、环境准备常用使用方法一、简介 现如今APP隐私合规十分重要&#xff0c;各监管部门不断开展APP专项治理工作及核查通报&#xff0c;不合规的APP通知整改或直接下架。camille可以hook住Android敏感接口&#xff0c;检测是否第三方SDK调用。根据隐私合规的场景&a…...

手把手学会DFS (递归入门)

目录 算法介绍 递归实现指数型枚举 递归实现排列型枚举 递归实现组合型枚举 算法介绍 &#x1f9e9;DFS 即 Depth First Search &#xff0c;中文又叫深度优先搜索&#xff0c;是一种沿着树的深度对其进行遍历&#xff0c;直到尽头之后再进行回溯&#xff0c;再走其他路线的…...

由《三体》太阳文明末日场景想到的……

《三体》电视剧正在热播&#xff0c;热度持续不退&#xff0c;豆瓣评分8.6&#xff0c;基本已经预定年度口碑最高的科幻题材剧&#xff1b;除了在国内多个平台播出外&#xff0c;还走出国门&#xff0c;成功“出海”&#xff0c;《人民日报》两会特刊都予以了高度赞扬。 上图红…...

es6的Proxy与Reflect

Proxy是在对目标对象的读取时&#xff0c;架设一层拦截&#xff0c;可以在读取对象中的任意一个属性时做一些额外的操作 Proxy与Object.defineProperty方式设置setter、getter方法不同的是&#xff0c;Proxy是对目标对象的整体拦截&#xff0c;而Object.defineProperty注重对对…...

Linux环境部署vue项目 + nginx访问(包含nginx配置简介)

1、本地打包、上传 # 打包命令不同项目有略微差别&#xff0c;核心命令 npm run build# 我们项目前端给配了测试、生产环境&#xff0c;测试环境打包命令是 npm run build:stage# 建议先看一下项目的README文件打包之后&#xff0c;得到一个文件夹&#xff0c;一般叫dist、也有…...

到底什么是跨域,如何解决跨域(常见的几种跨域解决方案)?

文章目录1、什么是跨域2、解决跨域的几种方案2.1、JSONP 方式解决跨域2.2、CORS 方式解决跨域&#xff08;常见&#xff0c;通常仅需服务端修改即可&#xff09;2.3、Nginx 反向代理解决跨域&#xff08;推荐使用&#xff0c;配置简单&#xff09;2.4、WebSocket 解决跨域2.5、…...

pm3包1.4版本发布----一个用于3组倾向性评分的R包

目前&#xff0c;本人写的第二个R包pm3包的1.4版本已经正式在CRAN上线&#xff0c;用于3组倾向评分匹配&#xff0c;只能3组不能多也不能少。 可以使用以下代码安装 install.packages("pm3")什么是倾向性评分匹配&#xff1f;倾向评分匹配&#xff08;Propensity Sc…...

没有关系的话,那就去建立关系吧

今天给大家分享一道链表的好题--链表的深度拷贝&#xff0c;学会这道题&#xff0c;你的链表就可以达到优秀的水平了。力扣 先来理解一下题目意思&#xff0c;即建立一个新的单向链表&#xff0c;里面每个结点的值与对应的原链表相同&#xff0c;并且random指针也要指向新链表中…...

Vue项目

package.json : 描述这个NPM包的所有相关信息&#xff0c;包括作者、简介、包依赖、构建等信息&#xff0c;格式是严格的JSON格式。和java的maven的pom文件作用一样。 node_modules: 依赖需要下载后才能使用&#xff0c;存在依赖包的地方。使用npm install 安装依赖 babel.co…...

【webrtc】ICE 到VCMPacket的视频内存分配

ice的数据会在DataPacket 构造是进行内存分配和拷贝而后DataPacket 会传递给rtc模块处理rtc模块使用DataPacket 构造rtp包最终会给到OnReceivedPayloadData 进行rtp组帧。吊炸天的是DataPacket 竟然没有声明析构方法。RtpVideoStreamReceiver::OnReceivedPayloadData 的内存是外…...

进阶C语言——指针(二)【题目练习】

文章目录1.指针和数组概念的理解2.指针和数组笔试题解析一维数组字符数组二维数组1.指针和数组概念的理解 指针和数组 数组&#xff1a;能够存放一组相同类型的元素&#xff0c;数组的大小取决于数组的元素个数和元素类型指针&#xff1a;也是地址或指针变量&#xff0c;大小是…...

基于FPGA的PID算法学习———实现PID比例控制算法

基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容&#xff1a;参考网站&#xff1a; PID算法控制 PID即&#xff1a;Proportional&#xff08;比例&#xff09;、Integral&#xff08;积分&…...

大话软工笔记—需求分析概述

需求分析&#xff0c;就是要对需求调研收集到的资料信息逐个地进行拆分、研究&#xff0c;从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要&#xff0c;后续设计的依据主要来自于需求分析的成果&#xff0c;包括: 项目的目的…...

Go 语言接口详解

Go 语言接口详解 核心概念 接口定义 在 Go 语言中&#xff0c;接口是一种抽象类型&#xff0c;它定义了一组方法的集合&#xff1a; // 定义接口 type Shape interface {Area() float64Perimeter() float64 } 接口实现 Go 接口的实现是隐式的&#xff1a; // 矩形结构体…...

Linux云原生安全:零信任架构与机密计算

Linux云原生安全&#xff1a;零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言&#xff1a;云原生安全的范式革命 随着云原生技术的普及&#xff0c;安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测&#xff0c;到2025年&#xff0c;零信任架构将成为超…...

JDK 17 新特性

#JDK 17 新特性 /**************** 文本块 *****************/ python/scala中早就支持&#xff0c;不稀奇 String json “”" { “name”: “Java”, “version”: 17 } “”"; /**************** Switch 语句 -> 表达式 *****************/ 挺好的&#xff…...

React---day11

14.4 react-redux第三方库 提供connect、thunk之类的函数 以获取一个banner数据为例子 store&#xff1a; 我们在使用异步的时候理应是要使用中间件的&#xff0c;但是configureStore 已经自动集成了 redux-thunk&#xff0c;注意action里面要返回函数 import { configureS…...

LRU 缓存机制详解与实现(Java版) + 力扣解决

&#x1f4cc; LRU 缓存机制详解与实现&#xff08;Java版&#xff09; 一、&#x1f4d6; 问题背景 在日常开发中&#xff0c;我们经常会使用 缓存&#xff08;Cache&#xff09; 来提升性能。但由于内存有限&#xff0c;缓存不可能无限增长&#xff0c;于是需要策略决定&am…...

人工智能 - 在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型

在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型。这些平台各有侧重&#xff0c;适用场景差异显著。下面我将从核心功能定位、典型应用场景、真实体验痛点、选型决策关键点进行拆解&#xff0c;并提供具体场景下的推荐方案。 一、核心功能定位速览 平台核心定位技术栈亮…...

TJCTF 2025

还以为是天津的。这个比较容易&#xff0c;虽然绕了点弯&#xff0c;可还是把CP AK了&#xff0c;不过我会的别人也会&#xff0c;还是没啥名次。记录一下吧。 Crypto bacon-bits with open(flag.txt) as f: flag f.read().strip() with open(text.txt) as t: text t.read…...

CppCon 2015 学习:Reactive Stream Processing in Industrial IoT using DDS and Rx

“Reactive Stream Processing in Industrial IoT using DDS and Rx” 是指在工业物联网&#xff08;IIoT&#xff09;场景中&#xff0c;结合 DDS&#xff08;Data Distribution Service&#xff09; 和 Rx&#xff08;Reactive Extensions&#xff09; 技术&#xff0c;实现 …...