当前位置: 首页 > news >正文

pm3包1.4版本发布----一个用于3组倾向性评分的R包

目前,本人写的第二个R包pm3包的1.4版本已经正式在CRAN上线,用于3组倾向评分匹配,只能3组不能多也不能少。
可以使用以下代码安装

install.packages("pm3")

在这里插入图片描述
什么是倾向性评分匹配?倾向评分匹配(Propensity Score Matching,简称PSM)是一种统计学方法,用于处理观察研究(Observational Study)的数据,在SCI文章中应用非常广泛。在观察研究中,由于种种原因,数据偏差(bias)和混杂变量(confounding variable)较多,倾向评分匹配的方法正是为了减少这些偏差和混杂变量的影响,以便对实验组和对照组进行更合理的比较。
为什么需要做倾向评分匹配?
我们知道RCT的证据力度高,是因为对患者进行了严格的筛选。我们的回顾性研究都是过去的数据,很难像RCT一样进行严格的筛选出两组患者基线相近的基础资料,但我们可以通过倾向评分匹配把回归性的数据进行筛选,把基线资料相近的患者进行匹配,得到近似RCT的效果。
应用场景
 1.基线资料不平
 2.开展病例对照研究病阳性例数较少,如罕见病研究
 3.将众多混杂因素变为一个变量:倾向值
以下为一个实例,没进行匹配前两组患者基线资料相差很大,进行倾向评分匹配后,基线资料近似一致了
在这里插入图片描述
1.4版本版本修正了上一个版本的一些错误,上次版本的教程写得不是很满意,这次我从新写一下我们先来看一下pm3函数

pm3 <-function(data,x,y,covs,factor,CALIP)

这里有6个参数,data就是你的数据,x就是你要比较匹配的变量,你可以使用字符也可以使用数字,但是你如果使用数字来表示的话必须是1,2,3,使用0,1,2或者其他的数列都会报错。我们这里是race,y是你要比较的结局变量,covs是协变量的意思,填入你模型模型中的协变量,也就是你要匹配的基线指标,包括连续的和分类的,factor填入变量后会把你数据中的分类变量转成因子,CALIP是卡钳的意思,不填的话默认是0.5.下面我继续以R包自带的早产数据来演示一下,先导入R包和数据

library(pm3)
bc<-prematurity

在这里插入图片描述
这是一个关于早产低体重儿的数据(公众号回复:早产数据,也可以获得该数据),低于2500g被认为是低体重儿。数据解释如下:low 是否是小于2500g早产低体重儿,age 母亲的年龄,lwt 末次月经体重,race 种族,smoke 孕期抽烟,ptl 早产史(计数),ht 有高血压病史,ui 子宫过敏,ftv 早孕时看医生的次数,bwt 新生儿体重数值。

假设我们研究的是有不同种族(race)对生出低体重儿(low)的影响。需要对3个种族进行基线资料倾向评分匹配

现在我们不需要像既往一样进行一大堆复杂操作,直接一句话代码,就搞定了

g<-pm3(data=bc,x="race",y="low",covs=c("age","lwt","ptl"),factor=c("ui","low"))

在上一个版本中,factor变量最少要取2个,现在没有限制了,取一个也可以生成数据。重要的事说两遍,x就是你要比较匹配的变量,你可以使用字符也可以使用数字,但是你如果使用数字来表示的话必须是1,2,3,使用0,1,2或者其他的数列都会报错。

g<-pm3(data=bc,x="race",y="low",covs=c("age","lwt","ptl"),factor=c("ui"))

在这里插入图片描述
我们把mbc提取出来

mbc<-g[["mbc"]]

进行匹配,这里就过一遍代码了,详细的可以看上一篇

library(tableone)
allVars <-c("age", "lwt", "ptl","ht")
fvars<-c("ht")
tab2 <- CreateTableOne(vars = allVars, strata = "race" ,
data = bc, factorVars=fvars,addOverall = TRUE )
print(tab2,smd = TRUE)
tab1 <- CreateTableOne(vars = allVars, strata = "race" ,
data = mbc, factorVars=fvars,addOverall = TRUE )
print(tab1,smd = TRUE)

在这里插入图片描述
在上一个版本中,有粉丝遇到过错误
Error in if ((absDist12 + absDist13) < mindis) { : missing value where TRUE/FALSE needed
在本次R包也进行了修正,消除了错误,这是使用粉丝数据进行的匹配
在这里插入图片描述
我们可以看到,匹配后效果很好,大部分变量基本上都P大于0.05了。由于pm3包使用的是for循环进行匹配,速度还是有点慢,我试了一下,数据量在1万的数据大概需要1分钟左右,接下来想使用apply函数来改写它,让它速度更快点,再来就是看看优化一下代码,开发1:2:2的匹配功能。

相关文章:

pm3包1.4版本发布----一个用于3组倾向性评分的R包

目前&#xff0c;本人写的第二个R包pm3包的1.4版本已经正式在CRAN上线&#xff0c;用于3组倾向评分匹配&#xff0c;只能3组不能多也不能少。 可以使用以下代码安装 install.packages("pm3")什么是倾向性评分匹配&#xff1f;倾向评分匹配&#xff08;Propensity Sc…...

没有关系的话,那就去建立关系吧

今天给大家分享一道链表的好题--链表的深度拷贝&#xff0c;学会这道题&#xff0c;你的链表就可以达到优秀的水平了。力扣 先来理解一下题目意思&#xff0c;即建立一个新的单向链表&#xff0c;里面每个结点的值与对应的原链表相同&#xff0c;并且random指针也要指向新链表中…...

Vue项目

package.json : 描述这个NPM包的所有相关信息&#xff0c;包括作者、简介、包依赖、构建等信息&#xff0c;格式是严格的JSON格式。和java的maven的pom文件作用一样。 node_modules: 依赖需要下载后才能使用&#xff0c;存在依赖包的地方。使用npm install 安装依赖 babel.co…...

【webrtc】ICE 到VCMPacket的视频内存分配

ice的数据会在DataPacket 构造是进行内存分配和拷贝而后DataPacket 会传递给rtc模块处理rtc模块使用DataPacket 构造rtp包最终会给到OnReceivedPayloadData 进行rtp组帧。吊炸天的是DataPacket 竟然没有声明析构方法。RtpVideoStreamReceiver::OnReceivedPayloadData 的内存是外…...

进阶C语言——指针(二)【题目练习】

文章目录1.指针和数组概念的理解2.指针和数组笔试题解析一维数组字符数组二维数组1.指针和数组概念的理解 指针和数组 数组&#xff1a;能够存放一组相同类型的元素&#xff0c;数组的大小取决于数组的元素个数和元素类型指针&#xff1a;也是地址或指针变量&#xff0c;大小是…...

Ajax简介

Ajax简介和使用 1.简介 AJAX Asynchronous JavaScript and XML&#xff08;异步的 JavaScript 和 XML&#xff09;。 AJAX 是一种在无需重新加载整个网页的情况下&#xff0c;能够更新部分网页的技术。 Ajax 不是一种新的编程语言&#xff0c;而是一种用于创建更好更快以及…...

ChatGPT 4 测试 两数比较大小问题。

按&#xff1a; 上次用3.5 测试了ChatGPT的两数比较大小问题&#xff0c;结果失败了。我要求不能用if语句&#xff0c;它避免不了。这次终于成功了&#xff0c;看来是进步很大。对话记录如下&#xff08;英文&#xff09; MaraSun Compare two 2 numbers in C# , but IF is no…...

SSM-CRUD整合视频教程:Spring、SpringMVC、MyBatis、bootstrap、pagehelper、JSR303后端校验

1、项目说明 1.1、业务说明 SSM:SpringMVCSpringMyBatisCRUD&#xff1a; Create&#xff08;创建&#xff09;Retrieve&#xff08;查询&#xff09;Update&#xff08;更新&#xff09;Delete&#xff08;删除) 总结&#xff1a;通过SSM框架来完成一个CRUD的操作。 1.2、功…...

Linux常用命令——基于Ubuntu22.04

本文介绍了一些Linux的常用命令。为了便于快速检索命令位置&#xff0c;文章二级标题都以“命令&#xff1a;命令的作用”展示&#xff0c;有些命令会先介绍命令的几个常用参数&#xff0c;然后结合具体的操作展示命令的使用。为了便于记忆&#xff0c;也会提到命令是由哪些短语…...

Sentinel

SentinelSentinel介绍什么是Sentinel?为什么需要流量控制&#xff1f;为什么需要熔断降级&#xff1f;一些普遍的使用场景本文介绍参考&#xff1a;Sentinel官网《Spring Cloud Alibaba 从入门到实战.pdf》Sentinel下载/安装项目演示构建项目控制台概览演示之前需先明确&#…...

再也不想去字节跳动面试了,6年测开面试遭到这样打击.....

前几天我朋友跟我吐苦水&#xff0c;这波面试又把他打击到了&#xff0c;做了快6年软件测试员。。。为了进大厂&#xff0c;也花了很多时间和精力在面试准备上&#xff0c;也刷了很多题。但题刷多了之后有点怀疑人生&#xff0c;不知道刷的这些题在之后的工作中能不能用到&…...

【深度解刨C语言】符号篇(全)

文章目录一.注释二.续行符与转义符1.续行符2.转义符三.回车与换行四.逻辑操作符五.位操作符和移位操作符六.前置与后置七.字符与字符串八./和%1.四种取整方式2.取模与取余的区别和联系3./两边异号的情况1.左正右负2.左负右正九.运算符的优先级一.注释 注释的两种符号&#xff…...

VS Code 将推出更多 AI 功能给 Java 开发者

大家好&#xff0c;欢迎来到我们的二月更新&#xff01;我们将为您带来与 JUnit 5 并行测试相关的新功能以及用于 Spring Boot Dashboard 的过滤功能。另外&#xff0c;OpenAI 和 ChatGPT 是最近的热点&#xff0c;所以在 GitHub Copilot 方面也有一些令人激动的消息&#xff0…...

关于利用FFT分析时域信号幅相的思考与验证

引言 利用FFT分析/估计时域信号的幅度和相位&#xff0c;属于传统估计的范畴。估计的准确程度受频率分辨率的影响较大。如果被估计的目标频率等于频率分辨率的整数倍&#xff0c;信号的幅相估计都是最准确的。一旦目标频率不等于频率分辨率的整数倍&#xff0c;幅度估计值将会…...

基于java中的Springboot框架实现餐厅点餐系统展示

基于java中的Springboot框架实现餐厅点餐系统开发语言和工具 开发语言&#xff1a;Java 框架&#xff1a;springboot JDK版本&#xff1a;JDK1.8 服务器&#xff1a;tomcat7 数据库&#xff1a;mysql 5.7 21世纪的今天&#xff0c;随着社会的不断发展与进步&#xff0c;人们对…...

案例07-在线人员列表逻辑混乱

一、背景介绍 在线人员列表涉及到的问题&#xff1a; 类中写了公共变量最后导致数据混乱现象 保存数据没有考虑业务的隔夜覆盖导致的逻辑漏洞 涉及到继承&#xff0c;对于this&#xff0c;如果父类有同样的成员最终使用哪一个&#xff1f; 参数不一致导致后续维护混乱 mysql由…...

Java集合框架

Java集合框架是Java编程语言所提供的一种便捷的数据结构的实现。Java集合框架提供了一种统一的接口和机制来访问和操作集合中的元素&#xff0c;这些元素可以是对象、基本数据类型或其他集合。Java集合框架是Java应用程序中最常用的特性之一&#xff0c;它为开发人员提供了许多…...

奇异值分解(SVD)原理与在降维中的应用

奇异值分解(SVD)原理与在降维中的应用 奇异值分解(Singular Value Decomposition&#xff0c;以下简称SVD)是在机器学习领域广泛应用的算法&#xff0c;它不光可以用于降维算法中的特征分解&#xff0c;还可以用于推荐系统&#xff0c;以及自然语言处理等领域。是很多机器学习算…...

GDB调试程序

1.GDB 调试程序 GDB是GNU开源组织发布的一个强大的UNIX下的程序调试工具。在UNIX平台下做软件&#xff0c;GDB这个调试工具有比VC的图形化调试器更强大的功能。所谓“寸有所长&#xff0c;尺有所短”就是这个道理。 一般来说&#xff0c;GDB主要帮忙你完成下面四个方面的功能…...

五种IO模型

用户空间与内核空间 操作系统把内存空间划分成了两个部分&#xff1a;内核空间和用户空间。 为了保护内核空间的安全&#xff0c;操作系统一般都限制用户进程直接操作内核。 所以&#xff0c;当我们使用TCP发送数据的时候&#xff0c;需要先将数据从用户空间拷贝到内核空间&a…...

Vim 调用外部命令学习笔记

Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...

接口测试中缓存处理策略

在接口测试中&#xff0c;缓存处理策略是一个关键环节&#xff0c;直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性&#xff0c;避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明&#xff1a; 一、缓存处理的核…...

idea大量爆红问题解决

问题描述 在学习和工作中&#xff0c;idea是程序员不可缺少的一个工具&#xff0c;但是突然在有些时候就会出现大量爆红的问题&#xff0c;发现无法跳转&#xff0c;无论是关机重启或者是替换root都无法解决 就是如上所展示的问题&#xff0c;但是程序依然可以启动。 问题解决…...

地震勘探——干扰波识别、井中地震时距曲线特点

目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波&#xff1a;可以用来解决所提出的地质任务的波&#xff1b;干扰波&#xff1a;所有妨碍辨认、追踪有效波的其他波。 地震勘探中&#xff0c;有效波和干扰波是相对的。例如&#xff0c;在反射波…...

springboot 百货中心供应链管理系统小程序

一、前言 随着我国经济迅速发展&#xff0c;人们对手机的需求越来越大&#xff0c;各种手机软件也都在被广泛应用&#xff0c;但是对于手机进行数据信息管理&#xff0c;对于手机的各种软件也是备受用户的喜爱&#xff0c;百货中心供应链管理系统被用户普遍使用&#xff0c;为方…...

中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试

作者&#xff1a;Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位&#xff1a;中南大学地球科学与信息物理学院论文标题&#xff1a;BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接&#xff1a;https://arxiv.…...

visual studio 2022更改主题为深色

visual studio 2022更改主题为深色 点击visual studio 上方的 工具-> 选项 在选项窗口中&#xff0c;选择 环境 -> 常规 &#xff0c;将其中的颜色主题改成深色 点击确定&#xff0c;更改完成...

对WWDC 2025 Keynote 内容的预测

借助我们以往对苹果公司发展路径的深入研究经验&#xff0c;以及大语言模型的分析能力&#xff0c;我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际&#xff0c;我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测&#xff0c;聊作存档。等到明…...

屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!

5月28日&#xff0c;中天合创屋面分布式光伏发电项目顺利并网发电&#xff0c;该项目位于内蒙古自治区鄂尔多斯市乌审旗&#xff0c;项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站&#xff0c;总装机容量为9.96MWp。 项目投运后&#xff0c;每年可节约标煤3670…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说&#xff0c;传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度&#xff0c;通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...