当前位置: 首页 > news >正文

Python+Yolov5道路障碍物识别

Python+Yolov5道路障碍物识别

如需安装运行环境或远程调试,见文章底部个人QQ名片,由专业技术人员远程协助!

前言

这篇博客针对<<Python+Yolov5道路障碍物识别>>编写代码,代码整洁,规则,易读。 学习与应用推荐首选。

文章目录

一、所需工具软件

二、使用步骤

1. 引入库

2. 识别图像特征

3. 参数设置

4. 运行结果

三、在线协助

一、所需工具软件

1. Pycharm, Python

2. Qt, OpenCV

二、使用步骤

1.引入库

代码如下(示例):

import cv2
import torch
from numpy import randomfrom models.experimental import attempt_load
from utils.datasets import LoadStreams, LoadImages
from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path
from utils.plots import plot_one_box
from utils.torch_utils import select_device, load_classifier, time_synchronized

2.识别图像特征

代码如下(示例):

defdetect(save_img=False):source, weights, view_img, save_txt, imgsz = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_sizewebcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(('rtsp://', 'rtmp://', 'http://'))# Directoriessave_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))  # increment run(save_dir / 'labels'if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir# Initializeset_logging()device = select_device(opt.device)half = device.type != 'cpu'# half precision only supported on CUDA# Load modelmodel = attempt_load(weights, map_location=device)  # load FP32 modelstride = int(model.stride.max())  # model strideimgsz = check_img_size(imgsz, s=stride)  # check img_sizeif half:model.half()  # to FP16# Second-stage classifierclassify = Falseif classify:modelc = load_classifier(name='resnet101', n=2)  # initializemodelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()# Set Dataloadervid_path, vid_writer = None, Noneif webcam:view_img = check_imshow()cudnn.benchmark = True# set True to speed up constant image size inferencedataset = LoadStreams(source, img_size=imgsz, stride=stride)else:save_img = Truedataset = LoadImages(source, img_size=imgsz, stride=stride)# Get names and colorsnames = model.module.names ifhasattr(model, 'module') else model.namescolors = [[random.randint(0, 255) for _ inrange(3)] for _ in names]# Run inferenceif device.type != 'cpu':model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters())))  # run oncet0 = time.time()for path, img, im0s, vid_cap in dataset:img = torch.from_numpy(img).to(device)img = img.half() if half else img.float()  # uint8 to fp16/32img /= 255.0# 0 - 255 to 0.0 - 1.0if img.ndimension() == 3:img = img.unsqueeze(0)# Inferencet1 = time_synchronized()pred = model(img, augment=opt.augment)[0]# Apply NMSpred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)t2 = time_synchronized()# Apply Classifierif classify:pred = apply_classifier(pred, modelc, img, im0s)# Process detectionsfor i, det inenumerate(pred):  # detections per imageif webcam:  # batch_size >= 1p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.countelse:p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)p = Path(p)  # to Pathsave_path = str(save_dir / p.name)  # img.jpgtxt_path = str(save_dir / 'labels' / p.stem) + (''if dataset.mode == 'image'elsef'_{frame}')  # img.txts += '%gx%g ' % img.shape[2:]  # print stringgn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwhiflen(det):# Rescale boxes from img_size to im0 sizedet[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()# Write resultsfor *xyxy, conf, cls inreversed(det):if save_txt:  # Write to filexywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywhline = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh)  # label formatwithopen(txt_path + '.txt', 'a') as f:f.write(('%g ' * len(line)).rstrip() % line + '\n')if save_img or view_img:  # Add bbox to imagelabel = f'{names[int(cls)]}{conf:.2f}'plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=3)# Print time (inference + NMS)print(f'{s}Done. ({t2 - t1:.3f}s)')# Save results (image with detections)if save_img:if dataset.mode == 'image':cv2.imwrite(save_path, im0)else:  # 'video'if vid_path != save_path:  # new videovid_path = save_pathifisinstance(vid_writer, cv2.VideoWriter):vid_writer.release()  # release previous video writerfourcc = 'mp4v'# output video codecfps = vid_cap.get(cv2.CAP_PROP_FPS)w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h))vid_writer.write(im0)if save_txt or save_img:s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}"if save_txt else''print(f"Results saved to {save_dir}{s}")print(f'Done. ({time.time() - t0:.3f}s)')print(opt)check_requirements()with torch.no_grad():if opt.update:  # update all models (to fix SourceChangeWarning)for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']:detect()strip_optimizer(opt.weights)else:detect()

3.参数定义

代码如下(示例):

if __name__ == '__main__':parser = argparse.ArgumentParser()parser.add_argument('--weights', nargs='+', type=str, default='yolov5_best_road_crack_recog.pt', help='model.pt path(s)')parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')parser.add_argument('--view-img', action='store_true', help='display results')parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')parser.add_argument('--classes', nargs='+', type=int, default='0', help='filter by class: --class 0, or --class 0 2 3')parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')parser.add_argument('--augment', action='store_true', help='augmented inference')parser.add_argument('--update', action='store_true', help='update all models')parser.add_argument('--project', default='runs/detect', help='save results to project/name')parser.add_argument('--name', default='exp', help='save results to project/name')parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')opt = parser.parse_args()print(opt)check_requirements()with torch.no_grad():if opt.update:  # update all models (to fix SourceChangeWarning)for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']:detect()strip_optimizer(opt.weights)else:detect()
  1. 运行结果如下

三、在线协助:

如需安装运行环境或远程调试,见文章底部个人QQ名片,由专业技术人员远程协助!
1)远程安装运行环境,代码调试
2)Qt, C++, Python入门指导
3)界面美化
4)软件制作

博主推荐文章:https://blog.csdn.net/alicema1111/article/details/123851014

博主推荐文章:https://blog.csdn.net/alicema1111/article/details/128420453

个人博客主页:https://blog.csdn.net/alicema1111?type=blog

博主所有文章点这里:https://blog.csdn.net/alicema1111?type=blog

相关文章:

Python+Yolov5道路障碍物识别

PythonYolov5道路障碍物识别如需安装运行环境或远程调试&#xff0c;见文章底部个人QQ名片&#xff0c;由专业技术人员远程协助&#xff01;前言这篇博客针对<<PythonYolov5道路障碍物识别>>编写代码&#xff0c;代码整洁&#xff0c;规则&#xff0c;易读。 学习与…...

全新升级,EasyV 3D高德地图组件全新上线

当我们打开任意一个可视化搭建工具或者搜索数据可视化等关键词&#xff0c;我们会发现「地图」是可视化领域中非常重要的一种形式&#xff0c;对于许多可视化应用场景都具有非常重要的意义&#xff0c;那对于EasyV&#xff0c;地图又意味着什么呢&#xff1f;EasyV作为数字孪生…...

从管理到变革,优秀管理者的进阶之路

作为一位管理者&#xff0c;了解自身需求、企业需求和用户需求是非常重要的。然而&#xff0c;仅仅满足这些需求是不够的。我们还需要进行系统化的思考&#xff0c;以了解我们可以为他人提供什么价值&#xff0c;以及在企业中扮演什么样的角色。只有清晰的自我定位&#xff0c;…...

安装Anaconda3

安装Anaconda3 下载安装文件 可以去官网下载 https://repo.anaconda.com/archive/根据自己的操作系统选择合适的Anaconda版本 我选择的是Anaconda3-2021.05-Linux-x86_64.sh的版本 方法一&#xff1a;可以下载到本地然后在上传到虚拟机 方法二&#xff1a;在终端输入以下…...

HTTPS,SSL(对称加密和非对称加密详解)

上一篇博客&#xff08;HTTP详解_徐憨憨&#xff01;的博客-CSDN博客&#xff09;详细讲解了关于HTTP的知识&#xff0c;了解到HTTP协议下的数据传输是一种明文传输&#xff0c;既然是明文传输&#xff0c;可能导致在传输过程中出现一些被篡改的情况&#xff0c;此时就需要对所…...

【数据结构】还不懂算法复杂度?一文带你速解

前言:前面我们已经系统的学完C语言的相关知识&#xff0c;现在我们已经较为熟练的掌握了C语言中的各中代码语法和结构使用&#xff0c;能够使用代码来解决一些简单问题。但是对于一个程序员来说&#xff0c;仅仅会语法是远远不够的&#xff0c;从今天开始&#xff0c;我们将进入…...

案例描述:update中,MySQL inner join 和 left join的区别,小结果集驱动大结果集

场景描述 以一个场景为例&#xff1a; 单据A&#xff1a;下游子表 &#xff08;数据量级小&#xff09; 单据B&#xff1a;下游主表&#xff08;数据量级小&#xff09; 单据C&#xff1a;中游子表&#xff08;数据量级小&#xff09; 单据D&#xff1a;中游主表&#xff08;…...

CF1784D Wooden Spoon

CF1784D Wooden Spoon 题目大意 有2n2^n2n个人&#xff0c;进行nnn轮比赛。比赛的图是一棵完全二叉树。编号小的人一定能赢编号大的人&#xff0c;如果一个人满足&#xff1a; 第一次比赛被打败打败这个人的人在第二次比赛中被打败打败上一个人的人在第三次比赛中被打败…\d…...

【数据结构】栈

文章目录&#x1f63a;前言栈初始化栈顶入栈栈顶出栈栈体判空栈的数据个数获取栈顶元素栈的销毁整体代码&#x1f63c;写在最后&#x1f63a;前言 &#x1f47b;前面我们学习了链表&#xff0c;总算是跨过一个台阶了&#xff0c;本章带大家轻松一波&#xff0c;领悟一下栈的魅力…...

C++单继承和多继承

C单继承和多继承继承单继承写法继承中构造函数的写法写法构造和析构的顺序问题多继承继承 1.继承&#xff0c;主要是遗传学中的继承概念 2.继承的写法&#xff0c;继承中的权限问题 3.继承中的构造函数的写法 继承&#xff1a;子类没有新的属性&#xff0c;或者行为的产生 父类…...

金三银四,今年企业招聘如何?

又是一年求职季&#xff0c;互联网人找工作&#xff0c;和找对象一样严谨&#xff0c;不随便放手更不随便牵手。于是挑挑拣拣&#xff0c;最后的结果可能就是把自己挑剩下了。 时间已经悄然滑进3月中旬&#xff0c;多少无处安放的青春&#xff0c;还没尘埃落定&#xff1f;优秀…...

数字信号处理:滤波、频谱

一、滤波算法 应该说数字滤波器可以有效减小50Hz工频的干扰&#xff0c;完全消除是不可能的。以20ms为最小单位的整倍数周期滤波&#xff0c;可以有效减少工频的干扰。 软件中构建 IIR 陷波或者 FIR 带阻 数字滤波器&#xff0c;消除工频干扰对测量结果的影响。 1. 自适应滤波 …...

C#等高级语言运行过程

C#等高级语言运行流程&#xff1a;假设您编写了一个 C# 程序并将其保存在一个称为源代码的文件中。特定于语言的编译器将源代码编译成 MSIL&#xff08;Microsoft 中间语言&#xff09;&#xff0c;也称为 CIL&#xff08;通用中间语言&#xff09;或 IL&#xff08;中间语言&a…...

如何优雅的用POI导入Excel文件

在企业级项目开发中&#xff0c;要经常涉及excel文件和程序之间导入导出的业务要求&#xff0c;那么今天来讲一讲excel文件导入的实现。java实现对excel的操作有很多种方式&#xff0c;例如EasyExcel等&#xff0c;今天我们使用的是POI技术实现excel文件的导入。POI技术简介1.P…...

【AI 工具】文心一言内测记录

文章目录一、申请内测二、收到内测邀请三、激活内测四、开始使用1、普通对话2、生成图片3、生成代码4、写剧本5、生成小说五、问题反馈一、申请内测 到 https://yiyan.baidu.com/welcome 页面 , 点击 " 开始体验 " 按钮 , 申请试用 ; 申请时 , 需要填写相关信息 ; 主…...

Github的使用

Github Date: March 8, 2023 Sum: Github的使用 Github 了解开源相关的概念 1. 什么是开源 2. 什么是开源许可协议 开源并不意味着完全没有限制&#xff0c;为了限制使用者的使用范围和保护作者的权利&#xff0c;每个开源项目都应该遵守开源许可协议&#xff08; Open Sou…...

抽丝剥茧还原真相,记一次神奇的崩溃

作者&#xff1a;靳倡荣 本文详细回放了一个崩溃案例的分析过程。回顾了C多态和类内存布局、pc指针与芯片异常处理、内存屏障的相关知识。 一、不讲“武德”的崩溃 1.1 查看崩溃调用栈 客户反馈了一个崩溃问题&#xff0c;并提供了core dump文件&#xff0c;查看崩溃调用栈如下…...

学习笔记八:docker资源配额

docker容器控制cpudocker容器控制cpu指定docker容器可以使用的cpu份额两个容器A、B的cpu份额分别为1000和500&#xff0c;结果会怎么样&#xff1f;给容器实例分配512权重的cpu使用份额总结CPU core核心控制扩展&#xff1a;服务器架构CPU配额控制参数的混合使用cpuset-cpus和c…...

小米10s格机修复 nv报错案例解析 关于基带分区的一些常识

前面分享过几期关于基带 diag端口与qcn相关的几篇帖子。其中一位粉丝朋友联系我。他的机型因为误格机导致手机进不去系统&#xff0c;反复进入官方rec报错nv损坏。进不去系统。 有兴趣的朋友可以参阅我的几个帖子&#xff0c;只是个人的一些片面理解。 基带相关贴; 安卓玩机…...

【3.17】MySQL索引整理、回溯(分割、子集问题)

3.1 索引常见面试题 索引的分类 什么是索引&#xff1f; 索引是一种数据结构&#xff0c;可以帮助MySQL快速定位到表中的数据。使用索引&#xff0c;可以大大提高查询的性能。 按「数据结构」分类&#xff1a;Btree索引、Hash索引、Full-text索引。 InnoDB 存储引擎创建的聚簇…...

转解疑难杂症,详解vector迭代器失效和深浅拷贝的问题

前文http://t.csdn.cn/kVeVX——vector模拟实现本篇文章主要是针对vector中的两个比较经典的问题同时也是上一篇文章遗留下来的问题进行详细解释&#xff0c;第一个就是迭代器失效的问题&#xff0c;第二个是深浅拷贝的问题。ps&#xff1a;注意本文演示用的代码是上一篇vector…...

质量工具之头脑风暴法

云质QMS原创 转载请注明来源 作者&#xff1a;王洪石 1. 什么是头脑风暴法 头脑风暴最早是精神病理学上的用语&#xff0c;指的是精神病患者的精神错乱状态&#xff0c;后来拓展为无限制的自由联想和讨论&#xff0c;其目的在于产生新创意、激发新设想&#xff0c;或通过找到新…...

【3】核心易中期刊推荐——人工智能计算机仿真

🚀🚀🚀NEW!!!核心易中期刊推荐栏目来啦 ~ 📚🍀 核心期刊在国内的应用范围非常广,核心期刊发表论文是国内很多作者晋升的硬性要求,并且在国内属于顶尖论文发表,具有很高的学术价值。在中文核心目录体系中,权威代表有CSSCI、CSCD和北大核心。其中,中文期刊的数…...

vFlash软件简介

&#x1f345; 我是蚂蚁小兵&#xff0c;专注于车载诊断领域&#xff0c;尤其擅长于对CANoe工具的使用&#x1f345; 寻找组织 &#xff0c;答疑解惑&#xff0c;摸鱼聊天&#xff0c;博客源码&#xff0c;点击加入&#x1f449;【相亲相爱一家人】&#x1f345; 玩转CANoe&…...

mysql-online-ddl是否需要rebuild

一、背景 DDL一直是DBA业务中的大项&#xff0c;看了TIDB的DDL讲解&#xff0c;恰巧我们的mysql业务大表也遇到了DDL的变更项&#xff0c;变更内容是将varchar(10)变更成varchar(20),这个变更通过官方文档很容易知道是不需要rebuild的&#xff08;这里要注意下这个varchar(255…...

力扣-超过经理收入的员工

大家好&#xff0c;我是空空star&#xff0c;本篇带大家了解一道简单的力扣sql练习题。 文章目录前言一、题目&#xff1a;181. 超过经理收入的员工二、解题1.正确示范①提交SQL运行结果2.正确示范②提交SQL运行结果3.正确示范③提交SQL运行结果4.正确示范④提交SQL运行结果5.其…...

决策树基础知识点解读

目录 ID3算法 C4.5算法 CART树 ID3算法 定义:在决策树各个结点上应用信息增益准则选择特征&#xff0c;递归的构建决策树。该决策树是多分支分类。 信息增益 意义&#xff1a;给定特征X的条件下&#xff0c;使得类别Y的信息的不确定性减少的程度。取值越大越好。 定义&am…...

【C++】入门知识之 命名空间与输入输出

前言C语言是结构化和模块化的语言&#xff0c;适合处理较小规模的程序。对于复杂的问题&#xff0c;规模较大的程序&#xff0c;需要高度的抽象和建模时&#xff0c;C语言则不合适。为了解决软件危机&#xff0c; 20世纪80年代&#xff0c; 计算机界提出了OOP(object oriented …...

redis持久化的几种方式

一、简介 Redis是一种高级key-value数据库。它跟memcached类似&#xff0c;不过数据可以持久化&#xff0c;而且支持的数据类型很丰富。有字符串&#xff0c;链表&#xff0c;集 合和有序集合。支持在服务器端计算集合的并&#xff0c;交和补集(difference)等&#xff0c;还支持…...

数据持久化层--查询分离

1. 业务场景 1)查询慢。当时工单数据库里面有1000万左右的客服工单时,每次查询时需要关联其他近10个表,一次查询平均花费13秒左右。 2)打开工单慢。工单打开以后需要调用多个接口,分别将用户信息、订单信息以及其他客服创建的单据信息列出来(如退款、赔偿、充值、投诉等…...

导航网站建设/抖音关键词查询工具

区别HashMapHashtable效率/线程非线程安全的。所以HashMap效率性能要高 线程安全的&#xff0c;方法级别的强制同步&#xff0c;效率低null值null可以作为键&#xff0c;这样的键只有一个&#xff1b;可以有一个或多个键所对应的值为nullkey和value都不允许出现null值继承继承…...

网站建设博敏/建立网站怎么搞

这样做的目的是一次遍历两个列表,一个是右列表,另一个是左列表。然后测量两点之间的角度,并将其与之前计算的角度进行比较。如果在某个时候计算的角度变大(漏斗变宽),我想用I0和新的右和左列表重新开始迭代过程。目前我没有任何输出。我认为问题出在calc()语句上,我希望def cal…...

网易做相册旅游网站/买链接网

文/金金 首发于一周进步每到期末&#xff0c;都是大作业和报告的高发季&#xff0c;一个“死线”刚过&#xff0c;另一堆“死线”接踵而至。作为一名在报告的海洋里中挣扎&#xff0c;妄图顺利存活的同学&#xff0c;我自然是使用链接到样式的多级列表&#xff0c;Word自动化排…...

学校网站建设的申请/南昌企业网站建设

基于SSMMavenBootStrapMySQL的在线商城系统[实战视频]—304人已学习 课程介绍 本课程基于MavenSpringSpringMVCMyBatisMySQLBootStrap技术&#xff0c;使用IntelliJ IDEA开发工具。 主要是锻炼SSM技术的运用&#xff0c;通过项目实战&#xff0c;加强对框架技术的理解和运用…...

1688网站建设与维护/百度推广客户端官方下载

做了某题之后发现trie的AC自动机太垃圾了&#xff0c;动不动就TLE&#xff0c;然后我就去学了trie图。 #include<iostream> #include<cstdio> using namespace std; struct trie {int count;trie *fail,*nxt[26];trie(){count0;failNULL;for(int i0;i<26;i)nxt[…...

泰安受欢迎的网站建设/独立网站和平台网站

前言:内容包括正则表达式的子表达式&#xff0c;回溯引用&#xff0c;前后查找&#xff0c;嵌入条件&#xff0c;以及例子的拆分介绍。如果文字描述有问题可以评论指出&#xff0c;如果概念很模糊&#xff0c;可以加我微信&#xff0c;我会尽量解答你的疑惑。子表达式介绍:把一…...