当前位置: 首页 > news >正文

AGV平面坐标系变换公式及实例

1、AGV坐标系简介

d1048ed21fe73842fe5a624c58811e9f.png

如上图,小车前后对角是有激光雷达的,其坐标系称为激光坐标系,采用极坐标系体现。中间为车体坐标系,激光坐标系相对于车体坐标系关系不变;左下角是地图坐标系,小车扫图后,建立的坐标系即为地图坐标系,小车在运动过程中,车体坐标系相对于地图坐标系是变化的。

2、坐标系旋转与点旋转的变换公式  

坐标系旋转:  

       直角坐标系 XOY逆时针旋转 θ角后变成 X′OY′,原坐标系内点的坐标变化为:

19b71983ed78a4261d7c434b98d8a92d.png

如果是顺时针旋转,则将 𝜃 改为 −𝜃 带入公式。

另一种表达方式:

即X′OY′坐标系相对于“静止”XOY坐标系顺时针旋转:

x1=xcos(β)+ysin(β);          
y1=ycos(β)-xsin(β);

X′OY′坐标系相对于“静止”XOY坐标系逆时针旋转:    

x1=xcos(β)-ysin(β);          
y1=ycos(β)+xsin(β);

eb7a58254da5311f7b2169655f866201.jpeg

坐标系旋转公式推导图1

点的旋转:

直角坐标系 XOY内的点 A(x,y)绕原点逆时针旋转 α 角后得到点 B(x′,y′),两点坐标关系为:

a158bd3362e0c9874086af7823bf44da.png

3、小车中激光雷达点云转换例子实战

12dc35a5462d591dd62ff4f1aeae23ef.png

再次温习这个图。

①激光的点云由极坐标点转直角坐标系点:    

x=r⋅cos(θ)

y=r⋅sin(θ)

直角坐标转极坐标系:

21264af8b73e56fef0909fad6087adae.png

82037f40ca029d9bd284036db215c62f.png

②激光坐标系转小车坐标系

              这两个坐标系相对关系固定,激光坐标系相对于小车坐标系的变换可以认为是小车坐标系旋转到激光坐标系,这样激光坐标系的点就映射到了小车坐标系。实际中,除了旋转还有原点位置的偏差,这块直接加上差值即可,差值是激光坐标系原点相对于小车坐标系坐标系原点的参数,接口可以获取。

灵魂代码如下:

cartesian_x = dist*cos(angle+install_info_yaw) + install_info_x;
cartesian_y = dist*sin(angle+install_info_yaw) + install_info_y;

展开后发现是激光雷达坐标的install_info_yaw相对于小车坐标系都是逆时针数据。

       ③小车坐标系下的雷达点云数据相对于地图坐标系的转换

此时地图坐标系是“静止”的,那么接口给出的小车实时位置x,y和yaw信息是相对于

地图坐标系的。根据坐标系旋转公式推导图1,已知的是红色坐标系下的点(小车坐标系),求蓝色坐标系下的点(地图坐标系),即已知x’,y’,θ求x,y。我的处理方式是求旋转矩阵的逆,然后再求出x,y,用的eigen库。坐标系旋转都是相对的,后面想起更好的方式再记录。

if(robot_push_data_.angle > 0){float agv_yal = -robot_push_data_.angle;Eigen::Matrix2d r;r << cos(agv_yal), sin(agv_yal),-sin(agv_yal), cos(agv_yal);Eigen::MatrixXd pos(2,1);pos(0,0) = cartesian_x;pos(1,0) = cartesian_y;Eigen::MatrixXd posnew(2,1);posnew = r.inverse()*pos;cartesian_x = posnew(0,0) + robot_push_data_.x;cartesian_y = posnew(1,0) + robot_push_data_.y;
}

欢迎关注!探索不同。

2b17efb827995eddbd9bffbd6e2170e4.png

相关文章:

AGV平面坐标系变换公式及实例

1、AGV坐标系简介 如上图&#xff0c;小车前后对角是有激光雷达的&#xff0c;其坐标系称为激光坐标系&#xff0c;采用极坐标系体现。中间为车体坐标系&#xff0c;激光坐标系相对于车体坐标系关系不变&#xff1b;左下角是地图坐标系&#xff0c;小车扫图后&#xff0c;建立的…...

es切片和集群

解决单点故障 支持高并发 解决海量数据 1.cluster 集群&#xff1a;包含多个节点&#xff0c;每个节点属于哪个集群是通过一个集群名称&#xff08;集群名称&#xff0c;默认是elasticsearch&#xff09;来决定的&#xff0c;对于中小型应用来说&#xff0c;刚开始一个集群就…...

IEEE官方列表会议 | 第三届能源与环境工程国际会议(CFEEE 2024)

会议简介 Brief Introduction 2024年第三届能源与环境工程国际会议(CFEEE 2024) 会议时间&#xff1a;2024年12月2日-4日 召开地点&#xff1a;澳大利亚凯恩斯 大会官网&#xff1a;CFEEE 2024-2024 International Conference on Frontiers of Energy and Environment Engineer…...

深度学习中的正则化技术 - Dropout篇

序言 在深度学习的浩瀚领域中&#xff0c;模型过拟合一直是研究者们面临的挑战之一。当模型在训练集上表现得近乎完美&#xff0c;却难以在未见过的数据&#xff08;测试集&#xff09;上保持同样优异的性能时&#xff0c;过拟合现象便悄然发生。为了有效缓解这一问题&#xf…...

《昇思 25 天学习打卡营第 18 天 | 扩散模型(Diffusion Models) 》

《昇思 25 天学习打卡营第 18 天 | 扩散模型&#xff08;Diffusion Models&#xff09; 》 活动地址&#xff1a;https://xihe.mindspore.cn/events/mindspore-training-camp 签名&#xff1a;Sam9029 扩散模型&#xff08;Diffusion Models&#xff09; 扩散模型概述 扩散模…...

【Django+Vue3 线上教育平台项目实战】Elasticsearch实战指南:从基础到构建课程搜索与数据同步接口

文章目录 前言一、Elasticsearch倒排索引 二、Docker 搭建 ESDocker 安装Docker 搭建 ES 三、ES基础语法创建索引查看索引删除索引添加数据查询数据修改数据删除数据条件查询分页查询排序 多条件查询andor 范围查询 四、ES在项目中的应用示例 前言 在数据驱动的时代&#xff0c…...

libtins初探-抓包嗅探

libtin 一、概述1. 可移植性2. 特性 二、基础知识1. PDU2. 地址类3. 地址范围类4. 网络接口5. 写pcap文件 三、嗅探1.嗅探基础2. 嗅探器配置3. 循环嗅探4. 使用迭代器嗅探6. 包对象7. 读取pcap文件8. 包的解析 四、发送包1. 发送网络层pdu2. 发送链路层pdu3. 发送和接收响应校验…...

大语言模型-Bert-Bidirectional Encoder Representation from Transformers

一、背景信息&#xff1a; Bert是2018年10月由Google AI研究院提出的一种预训练模型。 主要用于自然语言处理&#xff08;NLP&#xff09;任务&#xff0c;特别是机器阅读理、文本分类、序列标注等任务。 BERT的网络架构使用的是多层Transformer结构&#xff0c;有效的解决了长…...

bug诞生记——动态库加载错乱导致程序执行异常

大纲 背景问题发生问题猜测和分析过程是不是编译了本工程中的其他代码是不是有缓存是不是编译了非本工程的文件是不是调用了其他可执行文件查看CMakefiles分析源码检查正在运行程序的动态库 解决方案 这个案例发生在我研究ROS 2的测试Demo时发生的。 整体现象是&#xff1a;修改…...

Matlab演示三维坐标系旋转

function showTwo3DCoordinateSystemsWithAngleDifference() clear all close all % 第一个三维坐标系 origin1 [0 0 0]; x_axis1 [1 0 0]; y_axis1 [0 1 0]; z_axis1 [0 0 1];% 绕 x 轴旋转 30 度的旋转矩阵 theta_x 30 * pi / 180; rotation_matrix_x [1 0 0; 0 cos(th…...

redis的持久化机制以及集群模式

1.redis的持久化机制 内存数据库具有高速读写的优势&#xff0c;但由于数据存储在内存中&#xff0c;一旦服务器停止或崩溃&#xff0c;所有数据将会丢失。持久化机制的引入旨在将内存中的数据持久化到磁盘上&#xff0c;从而在服务器重启后能够恢复数据&#xff0c;提供更好的…...

【论文解读】大模型算法发展

一、简要介绍 论文研究了自深度学习出现以来&#xff0c;预训练语言模型的算法的改进速度。使用Wikitext和Penn Treebank上超过200个语言模型评估的数据集(2012-2023年)&#xff0c;论文发现达到设定性能阈值所需的计算大约每8个月减半一次&#xff0c;95%置信区间约为5到14个月…...

WebApi配置Swagger、Serilog、NewtonsoftJson、Sqlsugar、依赖注入框架Autofac、MD5加密

文章目录 项目准备1、创建WebApi项目配置Swagger、Serilog、NewtonsoftJsonNewtonsoftJsonSwaggerSerilog 使用ORM框架SqlSugar创建Service类库构成MVC框架使用AutoFac进行依赖注入 创建用户登录接口添加用户时进行安全防护 项目准备 1、创建WebApi项目 配置Swagger、Serilog…...

【ffmpeg命令基础】视频选项讲解

文章目录 前言设置输出文件的帧数设置每秒播放的帧数设置输出视频的帧率示例1&#xff1a;更改输出视频的帧率示例2&#xff1a;将图像序列转换为视频 设置输入视频的帧率示例3&#xff1a;处理高帧率视频示例4&#xff1a;处理低帧率视频 同时设置输入和输出帧率示例5&#xf…...

使用uniapp开发小程序(基础篇)

本文章只介绍微信小程序的开发流程&#xff0c;如果需要了解其他平台的开发的流程的话&#xff0c;后续根据情况更新相应的文章,也可以根据uniapp官网的链接了解不同平台的开发流程 HBuilderX使用&#xff1a;https://uniapp.dcloud.net.cn/quickstart-hx.html 开发工具 开始…...

vue3【详解】组合式函数

什么是组合式函数&#xff1f; 利用 Vue 的组合式 API 来封装和复用有状态逻辑的函数&#xff0c;用于实现逻辑复用&#xff0c;类似 react18 中的 hook 函数名称 – 以 use 开头&#xff0c;采用驼峰命名&#xff0c;如 useTitle参数 – 建议使用 toValue() 处理&#xff08;…...

微服务实战系列之玩转Docker(六)

前言 刚进入大暑&#xff0c;“清凉不肯来&#xff0c;烈日不肯暮”&#xff0c;空调开到晚&#xff0c;还是满身汗。——碎碎念 我们知道&#xff0c;仓库可见于不同领域&#xff0c;比如粮食仓库、数据仓库。在容器领域&#xff0c;自然也有镜像仓库&#xff08;registry&…...

Python题解Leetcode Hot100之动态规划

动态规划解题步骤-5部曲 确定dp数组&#xff08;dp table&#xff09;以及下标的含义确定递推公式dp数组如何初始化确定遍历顺序举例推导dp数组 70. 爬楼梯 题目描述 假设你正在爬楼梯。需要 n 阶你才能到达楼顶。每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到…...

你了解GD32 MCU上下电要求吗

你了解GD32 MCU的上下电要求吗&#xff1f;MCU的上下电对于系统的稳定运行非常重要。 以GD32F30X为例&#xff0c;上电/掉电复位波形如如下图所示。 上电过程中&#xff0c;VDD/VDDA电压上电爬坡&#xff0c;当电压高于VPOR&#xff08;上电复位电压&#xff09;MCU开始启动&a…...

二、【Python】入门 - 【PyCharm】安装教程

往期博主文章分享文章&#xff1a; 【机器学习】专栏http://t.csdnimg.cn/sQBvw 目录 第一步&#xff1a;PyCharm下载 第二步&#xff1a;安装&#xff08;点击安装包打开下图页面&#xff09; 第三步&#xff1a;科学使用&#xff0c;请前往下载最新工具及教程&#xff1a…...

Docker 离线安装指南

参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性&#xff0c;不同版本的Docker对内核版本有不同要求。例如&#xff0c;Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本&#xff0c;Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...

在软件开发中正确使用MySQL日期时间类型的深度解析

在日常软件开发场景中&#xff0c;时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志&#xff0c;到供应链系统的物流节点时间戳&#xff0c;时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库&#xff0c;其日期时间类型的…...

HTML 语义化

目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案&#xff1a; 语义化标签&#xff1a; <header>&#xff1a;页头<nav>&#xff1a;导航<main>&#xff1a;主要内容<article>&#x…...

【Oracle APEX开发小技巧12】

有如下需求&#xff1a; 有一个问题反馈页面&#xff0c;要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据&#xff0c;方便管理员及时处理反馈。 我的方法&#xff1a;直接将逻辑写在SQL中&#xff0c;这样可以直接在页面展示 完整代码&#xff1a; SELECTSF.FE…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)

宇树机器人多姿态起立控制强化学习框架论文解析 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架&#xff08;一&#xff09; 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...

MySQL 主从同步异常处理

阅读原文&#xff1a;https://www.xiaozaoshu.top/articles/mysql-m-s-update-pk MySQL 做双主&#xff0c;遇到的这个错误&#xff1a; Could not execute Update_rows event on table ... Error_code: 1032是 MySQL 主从复制时的经典错误之一&#xff0c;通常表示&#xff…...

JDK 17 序列化是怎么回事

如何序列化&#xff1f;其实很简单&#xff0c;就是根据每个类型&#xff0c;用工厂类调用。逐个完成。 没什么漂亮的代码&#xff0c;只有有效、稳定的代码。 代码中调用toJson toJson 代码 mapper.writeValueAsString ObjectMapper DefaultSerializerProvider 一堆实…...

医疗AI模型可解释性编程研究:基于SHAP、LIME与Anchor

1 医疗树模型与可解释人工智能基础 医疗领域的人工智能应用正迅速从理论研究转向临床实践,在这一过程中,模型可解释性已成为确保AI系统被医疗专业人员接受和信任的关键因素。基于树模型的集成算法(如RandomForest、XGBoost、LightGBM)因其卓越的预测性能和相对良好的解释性…...

深入理解 React 样式方案

React 的样式方案较多,在应用开发初期,开发者需要根据项目业务具体情况选择对应样式方案。React 样式方案主要有: 1. 内联样式 2. module css 3. css in js 4. tailwind css 这些方案中,均有各自的优势和缺点。 1. 方案优劣势 1. 内联样式: 简单直观,适合动态样式和…...

二叉树-144.二叉树的前序遍历-力扣(LeetCode)

一、题目解析 对于递归方法的前序遍历十分简单&#xff0c;但对于一位合格的程序猿而言&#xff0c;需要掌握将递归转化为非递归的能力&#xff0c;毕竟递归调用的时候会调用大量的栈帧&#xff0c;存在栈溢出风险。 二、算法原理 递归调用本质是系统建立栈帧&#xff0c;而非…...