Transformer在计算机视觉中的应用-VIT、TNT模型
上期介绍了Transformer的结构、特点和作用等方面的知识,回头看下来这一模型并不难,依旧是传统机器翻译模型中常见的seq2seq网络,里面加入了注意力机制,QKV矩阵的运算使得计算并行。
当然,最大的重点不是矩阵运算,而是注意力机制的出现。
一、CNN最大的问题是什么
CNN依旧是十分优秀的特征提取器,然而注意力机制的出现使得CNN隐含的一些问题显露了出来。
CNN中一个很重要的概念是感受野,一开始神经网络渐层的的卷积核中只能看到一些线条边角等信息,而后才能不断加大,看到一个小小的“面”,看到鼻子眼睛,再到后来看到整个头部。一方面的问题是:做到这些需要网络层数不断地加深(不考虑卷积核的大小),感受野才会变大;另一方面的问题是:特征图所表达出来的信息往往是十分抽象的,我们不清楚到底需要多少层也不清楚每层的抽象信息是否都有用(ResNet出现)。
假设我们的脸贴在一幅画上,我们无法看出一幅画里都有什么; “管中窥豹”、“坐井观天”、“一叶障目” 等都是我们此时的感受野太小了;稍微抬下头,我们看到了画中的人;稍微站得远一步,我们看到了整幅画从脑中的经验得知,这是《清明上河图》。

上面这种情况是我们机械的从视野的角度去分辨看待事物,然而我们是人类,我们拥有注意力。
我们会在观察一张图片时会忽略背景,注意图片中的主体(或相反)
我们会在区分狮子还是老虎时,更注意看它们的毛发,它们的头上有没有“王”。

回想注意力机制的特点,它是从"整体"上观察我们需要什么,要注意的地方在哪里。既然是在整体上观察,那么其“感受野”,一定就相当于许多层之后的CNN了。
CNN许多层才做到的事情,在Transformer中第一层就做到了。
二、VIT整体架构解读
2.1 图像转换成序列
接下来就是该怎么做了,由于Transofrmer是序列到序列模型,我们需要把图像信息转为序列传给Encoder。

观察上图左下角,一个完整的图片,我们可以把它切割成9份(举例),9个patch,每一份比如说是10x10x3的矩阵。将每一份通过一次卷积变成1x300的矩阵,由此变成序列。
如上图,9个300维的向量传递给Linear Projection of Flattened Patches层,其实就是一次全连接进行映射,把我们这些300维的向量映射成256/512维等的向量。
之后传递给Transformer Encoder。
2.2 VIT位置编码
我们上面把一张图片切成了9份,每份都有建筑物的一部分,要让计算机更好地识别出图片内容,这9份应当给它们加上序号,即位置编码。

论文实验证明,加上序号比不加效果好;以1-9为序号和以(1,1) (1,2) (1,3) (2,1)...(3,3)为序号结果相差不大。
当然,该论文进行的是分类任务,位置编码1D和2D确实没有太大区别。但如果放在分割等任务就不一定了。
2.3 VIT工作原理

可以看到,上图除了1-9以外,还存在一个序列0,我们把这个0叫做token。这个token一般只用于分类任务,而检测分割一般用不到。
以分类任务为例,无非是多了一行序列。
当把0号token+序列1-9传递给Encoder后,它内部进行QKV计算,和权重矩阵计算转变为QKV矩阵继续计算。其本质就是0号token+序列1-9这10个序列点积,这样0号token中就是存储着序列1-9的特征9个patch的。如此经过L轮,经过L轮计算,0号token中的信息就是全局信息了。
之后,就可以使用0号token这个向量去做分类了。
2.4 backbone

如上,Embedded Patches+位置编码后经过层归一化,多头注意力,层归一化,全连接,期间还有这残差连接。
另外这不只是一轮,而是会执行多次。
三、Transformer为什么能
就像 一 中末尾说的那样,它是从"整体"上观察我们需要什么,要注意的地方在哪里。既然是在整体上观察,那么其“感受野”,一定就相当于许多层之后的CNN了。

因为0号token是最后拿去进行分类的,在计算时,第一层第一次的计算0号就分别于1-9patch进行了点积,这9个局部信息组成的整体便是这张图片。

上图可以看到,这样做在浅层就能获得较大的范围信息;可能5层就做得比CNN好了;全局信息丰富,更有助于理解图像。
四、VIT公式解读和效果图

E表示的是全连接,P²·C的矩阵映射为P²·D维。后面的则是位置编码,(N+1)·D维,N是N个patch,+1是因为前面所提的0号token。

Z是每层的输入,Z0就是第0层,记得加上位置编码。

然后就是进行多轮多头注意力机制的运算,MSA是多头注意力,LN是层归一化,MLP是全连接。后面的加法是残差连接。

最后输出结果。
效果图

其中ViT后面的16 14 32指的是patch的大小,对于一张图片来说,patch越大窗口数量越少,patch越小窗口数量越多。
显然与ResNet相比,ViT更好些。
五、TNT模型
5.1 TNT介绍
TNT:Transformer in Transformer
在VIT中,只针对patch进行了建模,比如一个patch是16*16*C (其中C是特征图个数,可能是256、512等)。每个patch可能有点大了,越大的patch所蕴含的信息就越多,学习起来难度就越大。
因此,一方面可以基于patch去做,另一方面还可以把patch再分得细一点,如16*16分成4个4*4。

所以TNT的名字就代表了它要做什么,在Transformer里嵌套一个Transformer。
5.2 TNT模型做法分析
TNT由外部Transformer和内部Transoformer组成,其中:
- 外部Transformer与VIT的做法一样

- 内部把每个patch组成多个超像素(4个像素点),把重组的序列继续做Transformer。

以16*16为例,序列的长度就是256了,太长了太慢了效率低,且通常一个像素点也不能表达什么信息。至少也是4个点。因此内部将每个patch拆分成很多个4*4的小块,即分成更多个batch,然后重组。
以内部的一个16*16*3的patch为例,拆分成4*4的超像素,结果就是每一个超像素,每一个小patch上特征的个数。

之前一个点上有3个channel的信息,而现在一个点上有48个。patch变小了但浓缩了。

把这些小patch整合在一起,全连接,之后的Transformer与前面一样。

如上,每个patch经过外部Transformer计算得到向量,每个patch又拆分成小patch后全连接,经过内部Transformer得到同样维度的输出向量。两个向量加在一起,作为最后的输出结果。
5.4 TNT模型位置编码
实验证明,内外Transormer都进行位置编码效果更好。
5.5 TNT效果
上方是DeiT,就当作是VIT把,下面是TNT。

显而易见TNT特征提取得更鲜明,效果更好,更细腻。
右图可见TNT点更发散些,说明特征更发散些,更好区分。
相关文章:
Transformer在计算机视觉中的应用-VIT、TNT模型
上期介绍了Transformer的结构、特点和作用等方面的知识,回头看下来这一模型并不难,依旧是传统机器翻译模型中常见的seq2seq网络,里面加入了注意力机制,QKV矩阵的运算使得计算并行。 当然,最大的重点不是矩阵运算&…...
快速入门Zookeeper技术.黑马教程
快速入门Zookeeper技术.黑马教程一、初识 Zookeeper二、ZooKeeper 安装与配置三、ZooKeeper 命令操作1.Zookeeper 数据模型2.Zookeeper 服务端常用命令3.Zookeeper 客户端常用命令四、ZooKeeper JavaAPI 操作五、ZooKeeper JavaAPI 操作1.Curator 介绍2.Curator API 常用操作2.…...
网易C++实习一面
说下C11新特性 auto有没有效率上的问题?为什么?发生在什么时候? 说下单例模式 什么时候需要加锁,什么时候不需要加锁? 像printf这样的函数,自己本身不修改数据,但是其他人会修改数据&#x…...
进程和线程的区别和联系
进程和线程的区别和联系1. 认识线程2. 进程和线程的关系3. 进程和线程的区别4. 线程共享了进程哪些资源1. 上下文切换2. 线程共享了进程哪些资源1.代码区2. 数据区3. 堆区1. 认识线程 线程是进程的一个实体,它被包含在进程中,一个进程至少包含一个线程,一个进程也可以包含多个…...
Java学习笔记——集合
目录集合与数组的对比集合体系结构Collection——常见成员方法Collection——迭代器基本使用Collection——迭代器原理分析Collection——迭代器删除方法增强for——基本格式增强for——注意点Collection——练习集合与数组的对比 package top.xxxx.www.CollectionDemo;import …...
差分运放公式推导-运算放大器
不知道大家有没遇到这种情况,在计算电路的时候,有时候会突然的忘记一些公式啊啥的,需要回去翻看笔记或者查资料,知其然而不知其所以然。今天跟大家一起来一起推导一遍差分运放的计算过程。 计算过程其实归根结底还是根据运放的虚…...
金丹二层 —— 字符串长度求解的四种方法
前言: 1.CSDN由于我的排版不怎么好看,我的有道云笔记比较美观,请移步有道云笔记 2.修炼必备 1)入门必备:VS2019社区版,下载地址:Visual Studio 较旧的下载 - 2019、2017、2015 和以前的版本 (m…...
深入剖析Linux——进程信号
致前行的人: 要努力,但不着急,繁花锦簇,硕果累累都需要过程! 目录 1.信号概念 1.1生活角度的信号 2. 技术应用角度的信号 3.Linux操作系统中查看信号 4.常用信号发送 4.1通过键盘发送信号 4.2调用系统函数发送信号 4.3…...
API-Server的监听器Controller的List分页失效
前言 最近做项目,还是K8S的插件监听器(理论上插件都是通过API-server通信),官方的不同写法居然都能出现争议,争议点就是对API-Server的请求的耗时,说是会影响API-Server。实际上通过源码分析两着有差别&am…...
jupyter notebook 进阶使用:nbextensions,终极避坑
jupyter notebook 进阶使用:nbextensions,终极避坑吐槽安装 jupyter_contrib_nbextensions1. Install the python package(安装python包)方法一,PIP:方法二,Conda(推荐)&…...
C 语言编程 — Doxygen + Graphviz 静态项目分析
目录 文章目录目录安装配置解析Project related configuration optionsBuild related configuration optionsConfiguration options related to warning and progress messagesConfiguration options related to the input filesConfiguration options related to source brows…...
Mybatis报BindingException:Invalid bound statement (not found)异常
一、前言 本文的mybatis是与springboot整合时出现的异常,若使用的不是基于springboot,解决思路也大体一样的。 二、从整合mybatis的三个步骤排查问题 但在这之前,我们先要知道整合mybatis的三个重要的工作,如此才能排查&#x…...
HttpRunner3.x(1)-框架介绍
HttpRunner 是一款面向 HTTP(S) 协议的通用测试框架,只需编写维护一份 YAML/JSON 脚本,即可实现自动化测试、性能测试、线上监控、持续集成等多种测试需求。主要特征继承的所有强大功能requests ,只需以人工方式获得乐趣即可处理HTTP…...
pytest学习和使用20-pytes如何进行分布式测试?(pytest-xdist)
20-pytes如何进行分布式测试?(pytest-xdist)1 什么是分布式测试?2 为什么要进行分布式测试?2.1 场景1:自动化测试场景2.2 场景2:性能测试场景3 分布式测试有什么特点?4 分布式测试关…...
三、Python 操作 MongoDB ----非 ODM
文章目录一、连接器的安装和配置二、新增文档三、查询文档四、更新文档五、删除文档一、连接器的安装和配置 pymongo: MongoDB 官方提供的 Python 工具包。官方文档: https://pymongo.readthedocs.io/en/stable/ pip安装,命令如下࿱…...
求最大公约数和最小公倍数---辗转相除法(欧几里得算法)
目录 一.GCD和LCM 1.最大公约数 2.最小公倍数 二.暴力求解 1.最大公约数 2.最小公倍数 三.辗转相除法 1.最大公约数 2.最小公倍数 一.GCD和LCM 1.最大公约数 最大公约数(Greatest Common Divisor,简称GCD)指的是两个或多个整数共有…...
音视频开发_获取媒体文件的详细信息
一、前言 做音视频开发过程中,经常需要获取媒体文件的详细信息。 比如:获取视频文件的总时间、帧率、尺寸、码率等等信息。 获取音频文件的的总时间、帧率、码率,声道等信息。 这篇文章贴出2个我封装好的函数,直接调用就能获取媒体信息返回,copy过去就能使用,非常方便。…...
Springboot集成Swagger
一、Swagger简介注意点! 在正式发布的时候要关闭swagger(出于安全考虑,而且节省内存空间)之前开发的时候,前端只用管理静态页面, http请求到后端, 模板引擎JSP,故后端是主力如今是前…...
Vue全新一代状态管理库 Pinia【一篇通】
文章目录前言1. Pinia 是什么?1.1 为什么取名叫 Pinia?1.2. 为什么要使用 Pinia ?2. 安装 Pinia2.1.创建 Store2.1.1. Option 类型 Store2.1.2 Setup 函数类型 Store2.1.3 模板中使用3. State 的使用事项(Option Store )3.1 读取 State3.2 …...
STM32 -4 关于STM32的RAM、ROM
一 stm32 的flash是什么、有什么用、注意事项、如何查看 一 、说明 它主要用于存储代码,FLASH 存储器的内容在掉电后不会丢失,STM32 芯片在运行的时候,也能对自身的内部 FLASH 进行读写,因此,若内部 FLASH 存储了应用…...
未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?
编辑:陈萍萍的公主一点人工一点智能 未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战,在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...
Chapter03-Authentication vulnerabilities
文章目录 1. 身份验证简介1.1 What is authentication1.2 difference between authentication and authorization1.3 身份验证机制失效的原因1.4 身份验证机制失效的影响 2. 基于登录功能的漏洞2.1 密码爆破2.2 用户名枚举2.3 有缺陷的暴力破解防护2.3.1 如果用户登录尝试失败次…...
CTF show Web 红包题第六弹
提示 1.不是SQL注入 2.需要找关键源码 思路 进入页面发现是一个登录框,很难让人不联想到SQL注入,但提示都说了不是SQL注入,所以就不往这方面想了 先查看一下网页源码,发现一段JavaScript代码,有一个关键类ctfs…...
Oracle查询表空间大小
1 查询数据库中所有的表空间以及表空间所占空间的大小 SELECTtablespace_name,sum( bytes ) / 1024 / 1024 FROMdba_data_files GROUP BYtablespace_name; 2 Oracle查询表空间大小及每个表所占空间的大小 SELECTtablespace_name,file_id,file_name,round( bytes / ( 1024 …...
MODBUS TCP转CANopen 技术赋能高效协同作业
在现代工业自动化领域,MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步,这两种通讯协议也正在被逐步融合,形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...
【HTML-16】深入理解HTML中的块元素与行内元素
HTML元素根据其显示特性可以分为两大类:块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...
【论文阅读28】-CNN-BiLSTM-Attention-(2024)
本文把滑坡位移序列拆开、筛优质因子,再用 CNN-BiLSTM-Attention 来动态预测每个子序列,最后重构出总位移,预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵(S…...
根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:
根据万维钢精英日课6的内容,使用AI(2025)可以参考以下方法: 四个洞见 模型已经比人聪明:以ChatGPT o3为代表的AI非常强大,能运用高级理论解释道理、引用最新学术论文,生成对顶尖科学家都有用的…...
DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”
目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...
【分享】推荐一些办公小工具
1、PDF 在线转换 https://smallpdf.com/cn/pdf-tools 推荐理由:大部分的转换软件需要收费,要么功能不齐全,而开会员又用不了几次浪费钱,借用别人的又不安全。 这个网站它不需要登录或下载安装。而且提供的免费功能就能满足日常…...
