当前位置: 首页 > news >正文

PyTorch学习(1)

PyTorch学习(1)

CIFAR-10数据集-图像分类

数据集来源是官方提供的:

torchvision.datasets.CIFAR10()

共有十类物品,需要用CNN实现图像分类问题。

代码如下:(CIFAR_10_Classifier_Self_1.py)

import torch
import torchvision
from torch import optim
from torch.utils.data import DataLoader
import torch.nn as nn
import torch.nn.functional as F
from torchvision.transforms import transforms
import matplotlib as plttransform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]
)train_set = torchvision.datasets.CIFAR10(root='./CIFAR_10', train=True, transform=transform,download=True)
test_set = torchvision.datasets.CIFAR10(root='./CIFAR_10', train=False, transform=transform,download=True)train_loader = torch.utils.data.DataLoader(dataset=train_set, batch_size=4, shuffle=True) # shuffle: 打乱数据集顺序
test_loader = torch.utils.data.DataLoader(dataset=test_set, batch_size=4, shuffle=True)classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') # CIFAR-10 targetsclass MyNet(nn.Module):def __init__(self):super().__init__() # 初始化父类self.conv1 = nn.Conv2d(in_channels=3, out_channels=6, kernel_size=5)self.pool = nn.MaxPool2d(kernel_size=2)self.conv2 = nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5)self.fc1 = nn.Linear(in_features=16*5*5, out_features=120)self.fc2 = nn.Linear(in_features=120, out_features=84)self.fc3 = nn.Linear(in_features=84, out_features=10)def forward(self, x):x = self.pool(F.relu(self.conv1(x))) # 卷积层后面通常接非线性变换x = self.pool(F.relu(self.conv2(x)))x = torch.flatten(x, 1)x = F.relu(self.fc1(x))x = F.relu(self.fc2(x))x = self.fc3(x)return xnet = MyNet()criterion = nn.CrossEntropyLoss()
# optimizer: 优化器 SGD: 随机梯度下降
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)for epoch in range(2): # 训练进行两个epoch,每个epoch都代表一次完整的数据集遍历running_loss = 0.0for i, data in enumerate(train_loader, 0): # 遍历数据加载器(DataLoader)inputs, labels = dataoptimizer.zero_grad()outputs = net(inputs)loss = criterion(outputs, labels)loss.backward()optimizer.step()running_loss += loss.item()if i % 2000 == 1999:print(f'[{epoch + 1}, {i + 1:5d}] loss: {running_loss / 2000:.3f}')running_loss = 0.0
print('Finished Training')# save
PATH = './cifar_net.pth'
torch.save(net, PATH)

运行结果:

C:\Users\dell\anaconda3\envs\pytorch\python.exe C:\Users\dell\Desktop\2024Summer\project1\learn_pytorch\pythonProject3\CIFAR_10_Classifier_Self_1.py 
Files already downloaded and verified
Files already downloaded and verified
[1,  2000] loss: 2.208
[1,  4000] loss: 1.849
[1,  6000] loss: 1.681
[1,  8000] loss: 1.569
[1, 10000] loss: 1.523
[1, 12000] loss: 1.477
[2,  2000] loss: 1.395
[2,  4000] loss: 1.373
[2,  6000] loss: 1.360
[2,  8000] loss: 1.306
[2, 10000] loss: 1.325
[2, 12000] loss: 1.297
Finished TrainingProcess finished with exit code 0

把上面程序中的epoch循环次数改为10,并运行下列程序:(CIFAR_10_Classifier_Self_2.py)

import torch
from CIFAR_10_Classifier_Self_1 import MyNet
import torchvision.transforms as transforms
from PIL import Imagenet = MyNet()
PATH = './cifar_net.pth'
net.load_state_dict(torch.load(PATH))
net.eval()transform = transforms.Compose([transforms.Resize((32, 32)), # 输入不符合网络要求时,会报错transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])# read image
def image_loader(image_name):image = Image.open(image_name)image = transform(image).unsqueeze(0) # 在tensor外面套一层中括号[]return imagedef classify_image(image_path):image = image_loader(image_path)outputs = net(image)_, predicted = torch.max(outputs, 1)return predicted.item()image_path = './images/ALPINA B3.jpg'
predicted_class = classify_image(image_path)
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
print('Predicted Class:', classes[predicted_class])

对于输入图像:(ALPINA B3.jpg)

在这里插入图片描述

运行结果如下:

C:\Users\dell\anaconda3\envs\pytorch\python.exe C:\Users\dell\Desktop\2024Summer\project1\learn_pytorch\pythonProject3\CIFAR_10_Classifier_Self_2.py 
Files already downloaded and verified
Files already downloaded and verified
[1,  2000] loss: 2.227
[1,  4000] loss: 1.900
[1,  6000] loss: 1.696
[1,  8000] loss: 1.586
[1, 10000] loss: 1.518
[1, 12000] loss: 1.440
[2,  2000] loss: 1.386
[2,  4000] loss: 1.351
[2,  6000] loss: 1.342
[2,  8000] loss: 1.312
[2, 10000] loss: 1.293
[2, 12000] loss: 1.246
[3,  2000] loss: 1.194
[3,  4000] loss: 1.199
[3,  6000] loss: 1.180
[3,  8000] loss: 1.175
[3, 10000] loss: 1.150
[3, 12000] loss: 1.154
[4,  2000] loss: 1.070
[4,  4000] loss: 1.088
[4,  6000] loss: 1.099
[4,  8000] loss: 1.069
[4, 10000] loss: 1.101
[4, 12000] loss: 1.082
[5,  2000] loss: 0.988
[5,  4000] loss: 1.013
[5,  6000] loss: 1.024
[5,  8000] loss: 1.040
[5, 10000] loss: 1.033
[5, 12000] loss: 1.045
[6,  2000] loss: 0.944
[6,  4000] loss: 0.957
[6,  6000] loss: 0.978
[6,  8000] loss: 0.990
[6, 10000] loss: 0.976
[6, 12000] loss: 0.998
[7,  2000] loss: 0.891
[7,  4000] loss: 0.931
[7,  6000] loss: 0.945
[7,  8000] loss: 0.934
[7, 10000] loss: 0.936
[7, 12000] loss: 0.936
[8,  2000] loss: 0.851
[8,  4000] loss: 0.898
[8,  6000] loss: 0.907
[8,  8000] loss: 0.898
[8, 10000] loss: 0.890
[8, 12000] loss: 0.911
[9,  2000] loss: 0.809
[9,  4000] loss: 0.851
[9,  6000] loss: 0.856
[9,  8000] loss: 0.869
[9, 10000] loss: 0.888
[9, 12000] loss: 0.903
[10,  2000] loss: 0.796
[10,  4000] loss: 0.812
[10,  6000] loss: 0.825
[10,  8000] loss: 0.857
[10, 10000] loss: 0.865
[10, 12000] loss: 0.862
Finished Training
Predicted Class: carProcess finished with exit code 0

可以看到,能够将图片正确分类。

(之前epoch为2时,错误地将图片分类成了ship,推测是网络参数因为训练次数少导致并非较佳值;epoch为10时也不敢保证一定能预测正确)

MNIST手写数字识别(LeNet)

import torch
import numpy as np
from matplotlib import pyplot as plt
from torch import nn
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision import datasets
import torch.nn.functional as Ftransform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.1307,), (0.3081,))
])# Fetch the dataset
training_set = datasets.MNIST(root='./minst', train=True, transform=transform, download=True)
train_loader = DataLoader(dataset=training_set, batch_size=64, shuffle=True)test_set = datasets.MNIST(root='./minst', train=False, transform=transform, download=True)
test_loader = DataLoader(dataset=test_set, batch_size=64, shuffle=True)# show the dataset *
fig = plt.figure()
for i in range(12):plt.subplot(3, 4, i+1) # 第一个参数代表子图的行数,第二个参数代表该行图像的列数,第三个参数代表每行的第几个图像plt.tight_layout()plt.imshow(training_set.data[i], cmap='gray', interpolation='none')plt.title("Label: {}".format(training_set.targets[i]))plt.xticks([])plt.yticks([])
plt.show()class MyLeNet5(nn.Module):def __init__(self):super(MyLeNet5, self).__init__()self.c1 = nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5, padding=2)self.Sigmoid = nn.Sigmoid()self.s2 = nn.AvgPool2d(kernel_size=2)self.c3 = nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5)self.s4 = nn.AvgPool2d(kernel_size=2)self.c5 = nn.Conv2d(in_channels=16, out_channels=120, kernel_size=5)self.flatten = nn.Flatten()self.f6 = nn.Linear(in_features=120, out_features=84)self.output = nn.Linear(in_features=84, out_features=10)def forward(self, x):x = self.Sigmoid(self.c1(x))x = self.s2(x)x = self.Sigmoid(self.c3(x))x = self.s4(x)x = self.c5(x)x = self.flatten(x)x = self.f6(x)x = self.output(x)return xmodel = MyLeNet5()# loss function & optimizer(参数优化)
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(params=model.parameters(), lr=0.01, momentum=0.5) # momentum: 冲量# train
def train(epoch): # epoch: 方便打印running_loss = 0.0running_total = 0running_correct = 0for batch_idx, data in enumerate(train_loader, 0): # 给train_loader元素编号,从0开始inputs, targets = data # inputs和targets是“数组”的形式optimizer.zero_grad() # 消除优化器中原有的梯度outputs = model(inputs)loss = criterion(outputs, targets) # 对比输出结果和“答案”loss.backward()optimizer.step() # 优化网络参数running_loss += loss.item() # .item(): 取出tensor中特定位置的具体元素值并返回该值(Tensor to int or float)_, predicted = torch.max(outputs.data, dim=1) # 找到每个样本预测概率最高的类别的标签值(即预测结果)# dim=0计算tensor中每列的最大值的索引,dim=1表示每行的最大值的索引running_total += inputs.shape[0] # .shape[0]: 读取矩阵第一维度的长度running_correct += (predicted == targets).sum().item()if batch_idx % 300 == 299:print('[%d, %5d]: loss: %.3f , acc: %.2f %%'% (epoch + 1, batch_idx + 1, running_loss / 300, 100 * running_correct / running_total))running_loss = 0.0running_total = 0running_correct = 0# test *
def test(epoch):correct = 0total = 0with torch.no_grad():for data in test_loader:images, labels = dataoutputs = model(images)_, predicted = torch.max(outputs.data, dim=1)total += labels.size(0)correct += (predicted == labels).sum().item()acc = correct / totalprint('[%d / %d]: Accuracy on test set: %.1f %% ' % (epoch + 1, 10, 100 * acc))return accacc_list_test = []
for epoch in range(10):train(epoch)acc_test = test(epoch)acc_list_test.append(acc_test)plt.plot(acc_list_test)
plt.xlabel('Epoch')
plt.ylabel('Accuracy on Test Set')
plt.show()

运行结果:

在这里插入图片描述

C:\Users\dell\anaconda3\envs\pytorch\python.exe C:\Users\dell\Desktop\2024Summer\project1\learn_pytorch\pythonProject3\MINST_1.py 
[1,   300]: loss: 2.302 , acc: 11.04 %
[1,   600]: loss: 2.297 , acc: 11.97 %
[1,   900]: loss: 2.287 , acc: 15.71 %
[1 / 10]: Accuracy on test set: 26.9 % 
[2,   300]: loss: 2.212 , acc: 27.77 %
[2,   600]: loss: 1.695 , acc: 50.16 %
[2,   900]: loss: 0.959 , acc: 71.32 %
[2 / 10]: Accuracy on test set: 77.0 % 
[3,   300]: loss: 0.655 , acc: 79.78 %
[3,   600]: loss: 0.558 , acc: 82.46 %
[3,   900]: loss: 0.503 , acc: 84.27 %
[3 / 10]: Accuracy on test set: 86.3 % 
[4,   300]: loss: 0.431 , acc: 86.77 %
[4,   600]: loss: 0.413 , acc: 87.64 %
[4,   900]: loss: 0.391 , acc: 88.16 %
[4 / 10]: Accuracy on test set: 89.3 % 
[5,   300]: loss: 0.361 , acc: 89.16 %
[5,   600]: loss: 0.354 , acc: 89.33 %
[5,   900]: loss: 0.330 , acc: 89.92 %
[5 / 10]: Accuracy on test set: 90.4 % 
[6,   300]: loss: 0.322 , acc: 90.38 %
[6,   600]: loss: 0.322 , acc: 90.20 %
[6,   900]: loss: 0.306 , acc: 90.59 %
[6 / 10]: Accuracy on test set: 91.5 % 
[7,   300]: loss: 0.296 , acc: 90.87 %
[7,   600]: loss: 0.293 , acc: 91.23 %
[7,   900]: loss: 0.290 , acc: 91.17 %
[7 / 10]: Accuracy on test set: 92.1 % 
[8,   300]: loss: 0.279 , acc: 91.47 %
[8,   600]: loss: 0.274 , acc: 91.71 %
[8,   900]: loss: 0.263 , acc: 92.03 %
[8 / 10]: Accuracy on test set: 92.6 % 
[9,   300]: loss: 0.252 , acc: 92.34 %
[9,   600]: loss: 0.253 , acc: 92.16 %
[9,   900]: loss: 0.250 , acc: 92.61 %
[9 / 10]: Accuracy on test set: 93.3 % 
[10,   300]: loss: 0.240 , acc: 92.69 %
[10,   600]: loss: 0.230 , acc: 93.27 %
[10,   900]: loss: 0.230 , acc: 93.03 %
[10 / 10]: Accuracy on test set: 93.6 % 

在这里插入图片描述

问题区

import torchvision 和 from torchvision import * 有什么区别?

import torchvision  # 使用transforms模块  
transform = torchvision.transforms.Compose([...])
from torchvision import *  # 直接使用transforms模块(如果torchvision中有这样的公开导入)  
# 注意:实际上,torchvision不会将所有内容都直接暴露出来,这里只是为了说明  
transform = Compose([...])

然而,第二种方法可能会出现命名冲突的问题。同时,并非所有内容都会被采用第二种方法读入,以_开头的“私有”名称通常不会被导入。

因此,推荐使用 import torchvision 的方式。

DataLoader返回的是啥?为什么有时候要在外面套一个“enumerate()”?

返回值是一个实现了__iter__的对象,可以使用for循环进行迭代,或者转换成迭代器取第一条batch数据查看。

# train
def train(epoch):...for batch_idx, data in enumerate(train_loader, 0):...

在上面这段代码中,需要在train_loader外面套个enumerate的原因是:能够给train_loader加上编号,变成“batch_idx”。(这里是方便打印训练结果)

Python enumerate()函数使用举例:

>>> seq = ['one', 'two', 'three']
>>> for i, element in enumerate(seq):
...     print i, element
... 
0 one
1 two
2 three

torch.max()的作用?

用法如下:

import torchoutput = torch.tensor([[1, 2, 3], [3, 4, 5]])
predict = torch.max(output, dim=0) # dim=0: 取每一列的最大值
print(predict)
predict = torch.max(output, dim=1) # dim=1: 取每一行的最大值
print(predict)

输出:

torch.return_types.max(
values=tensor([3, 4, 5]),
indices=tensor([1, 1, 1]))torch.return_types.max(
values=tensor([3, 5]),
indices=tensor([2, 2]))

indices表示从0开始的下标。

_, predicted = torch.max(outputs.data, dim=1) 这里的下划线的作用是?

下划线表示一个占位符,表示该值被有意地忽略。

相关文章:

PyTorch学习(1)

PyTorch学习(1) CIFAR-10数据集-图像分类 数据集来源是官方提供的: torchvision.datasets.CIFAR10()共有十类物品,需要用CNN实现图像分类问题。 代码如下:(CIFAR_10_Classifier_Self_1.py) import torch import t…...

三思而后行:计算机行业的决策智慧

在计算机行业,"三思而后行"这一原则显得尤为重要。在这个快速发展、技术不断更新换代的领域,每一个决策都可能对项目的成功与否产生深远的影响。以下是一篇关于在计算机行业中三思重要性的文章。 三思而后行:计算机行业的决策智慧 …...

Linux--Socket编程UDP

前文:Socket套接字编程 UDP协议特点 无连接:UDP在发送数据之前不需要建立连接,减少了开销和发送数据之前的时延。尽最大努力交付:UDP不保证可靠交付,主机不需要维持复杂的连接状态表。面向报文:UDP对应用层…...

《javaEE篇》--单例模式详解

目录 单例模式 饿汉模式 懒汉模式 懒汉模式(优化) 指令重排序 总结 单例模式 单例模式属于一种设计模式,设计模式就好比是一种固定代码套路类似于棋谱,是由前人总结并且记录下来我们可以直接使用的代码设计思路。 单例模式就是,在有…...

Java核心 - Lambda表达式详解与应用示例

作者:逍遥Sean 简介:一个主修Java的Web网站\游戏服务器后端开发者 主页:https://blog.csdn.net/Ureliable 觉得博主文章不错的话,可以三连支持一下~ 如有疑问和建议,请私信或评论留言! 前言 Lambda表达式是…...

算法通关:006_1二分查找

二分查找 查找一个数组里面是否存在num主要代码运行结果 详细写法自动生成数组和num,利用对数器查看二分代码是否正确 查找一个数组里面是否存在num 主要代码 /*** Author: ggdpzhk* CreateTime: 2024-07-27*/ public class cg {//二分查找public static boolean …...

总结一些vue3小知识3

总结一些vue3小知识1:http://t.csdnimg.cn/C5vER 总结一些vue3小知识2:http://t.csdnimg.cn/sscid 1.限制时间选择器只能选择后面的日期 说明:disabled-date属性是一个用来判断该日期是否被禁用的函数,接受一个 Date 对象作为参…...

JAVAWeb实战(前端篇)

项目实战一 0.项目结构 1.创建vue3项目,并导入所需的依赖 npm install vue-router npm install axios npm install pinia npm install vue 2.定义路由,axios,pinia相关的对象 文件(.js) 2.1路由(.js) import {cre…...

axios请求大全

本文讲解axios封装方式以及针对各种后台接口的请求方式 axios的介绍和基础配置可以看这个文档: 起步 | Axios中文文档 | Axios中文网 axios的封装 axios封装的重点有三个,一是设置全局config,比如请求的基础路径,超时时间等,第二点是在每次…...

C# 简单的单元测试

文章目录 前言参考文档新建控制台项目新建测试项目添加引用添加测试方法测试结果(有错误)测试结果,通过正规的方法抛出异常 总结 前言 听说复杂的项目最好都要单元测试一下。我这里也试试单元测试这个功能。到时候调试起来也方便。 参考文档 C# 单元测试&#xf…...

Linux中Mysql5.7主从架构(一主多从)配置教程

🏡作者主页:点击! 🐧Linux基础知识(初学):点击! 🐧Linux高级管理防护和群集专栏:点击! 🔐Linux中firewalld防火墙:点击! ⏰️创作…...

BACnet物联网关BL103:Modbus协议转BACnet/MSTP

随着物联网技术在楼宇自动化与暖通控制系统中的迅猛发展,构建一种既经济高效又高度可靠的协议转换物联网关成为了不可或缺的核心硬件组件。在此背景下,我们钡铼特别推荐一款主流的BAS(楼宇自动化系统)与BACnet物联网关——BL103&a…...

Go 语言条件变量 Cond

1.Cond 的使用方法 Go 标准库提供 Cond 同步原语的目的是为等待/通知场景下的并发操作提供支持。Cond 通常用于等待某个条件的一组 goroutine,当条件变为 true 时,其中一个或者所有的 goroutine 会被唤醒执行。 Cond 与某个条件相关,这个条件需要一组 goroutine 协作达到。当这…...

PostgreSQL 中如何重置序列值:将自增 ID 设定为特定值开始

我是从excel中将数据导入,然后再通过sql插入数据,就报错。 需要设置自增ID开始值 1、确定序列名称: 首先,需要找到与的增字段相关的序列名称。假设表名是 my_table 和自增字段是 id,可以使用以下查询来获取序列名称…...

Unity 之 【Android Unity 共享纹理】之 Android 共享图片给 Unity 显示

Unity 之 【Android Unity 共享纹理】之 Android 共享图片给 Unity 显示 目录 Unity 之 【Android Unity 共享纹理】之 Android 共享图片给 Unity 显示 一、简单介绍 二、共享纹理 1、共享纹理的原理 2、共享纹理涉及到的关键知识点 3、什么可以实现共享 不能实现共享…...

Go语言的数据结构

数据结构 数组 支持多维数组,属于值类型,支持range遍历 例子:随机生成长度为10整数数组 package main import ("fmt""math/rand" ) // 赋值 随机获取100以内的整数 func RandomArrays() {var array [10]int //声明var…...

python_在sqlite中创建表并写入表头

python_在sqlite中创建表并写入表头 import sqlite3def write_title_to_sqlite(tableName,titleList,dataTypeGroupsList,database_path):conn sqlite3.connect(database_path)# 创建游标cursor conn.cursor()#MEMO 长文本#create_table_bodycreate_table_body "序号 …...

1.c#(winform)编程环境安装

目录 安装vs创建应用帮助查看器安装与使用( msdn) 安装vs 安装什么版本看个人心情,或者公司开发需求需要 而本栏全程使用vs2022进行开发c#,着重讲解winform桌面应用开发 使用***.net framework***开发 那先去官网安装企业版的vs…...

图中的最短环

2608. 图中的最短环 现有一个含 n 个顶点的 双向 图,每个顶点按从 0 到 n - 1 标记。图中的边由二维整数数组 edges 表示,其中 edges[i] [ui, vi] 表示顶点 ui 和 vi 之间存在一条边。每对顶点最多通过一条边连接,并且不存在与自身相连的顶…...

安装依赖 npm install idealTree:lib: sill idealTree buildDeps 卡着不动

我一直怀疑是网络问题,因为等了很久也能安装成功,就是时间比较长,直到现在完全受不了了,决定好好整治下这个问题! 1、执行命令 npm config get userconfig 查看配置文件所在位置,将其删除。 2、执行 n…...

LLMs之Llama 3.1:Llama 3.1的简介、安装和使用方法、案例应用之详细攻略

LLMs之Llama 3.1:Llama 3.1的简介、安装和使用方法、案例应用之详细攻略 导读:2024年7月23日,Meta重磅推出Llama 3.1。本篇文章主要提到了Meta推出的Llama 3.1自然语言生成模型。 背景和痛点 >> 过去开源的大型语言模型在能力和性能上一…...

如何实现一个大模型在回答问题时同时提供相关内容链接

通义生成 为了让大模型在回答问题时能够提供相关内容链接,通常采用的方法是结合检索增强生成(Retrieval-Augmented Generation, RAG)的技术。这种方法可以让大模型在生成答案的同时,从外部知识源中检索相关信息,并将这…...

<数据集>玉米地杂草识别数据集<目标检测>

数据集格式:VOCYOLO格式 图片数量:9900张 标注数量(xml文件个数):9900 标注数量(txt文件个数):9900 标注类别数:2 标注类别名称:[Maize, Weed] 序号类别名称图片数框数1Maize8439125142Weed959231048…...

vue3中动态添加form表单校验

<template><div><div v-for"(formData, index) in forms" :key"index"><u-form :model"formData" :rules"rules" ref"formRefs"><u-form-item label"用户名" prop"username"…...

Java面试八股之什么是声明式事务管理,spring怎么实现声明式事务管理?

什么是声明式事务管理&#xff0c;spring怎么实现声明式事务管理&#xff1f; 声明式事务管理是一种编程范式&#xff0c;它允许开发人员通过声明性的配置或注解&#xff0c;而不是硬编码事务处理逻辑&#xff0c;来指定哪些方法或类应该在其上下文中执行事务。这种方法将事务…...

springboot 缓存预热的几种方案

缓存预热是指在 Spring Boot 项目启动时&#xff0c;预先将数据加载到缓存系统&#xff08;如 Redis&#xff09;中的一种机制。 这里我给大家总结几个缓存预热的方案。 方案1&#xff1a;使用启动监听事件实现缓存预热 可以使用 ApplicationListener 监听 ContextRefreshed…...

谷粒商城实战笔记-62-商品服务-API-品牌管理-OSS整合测试

文章目录 一&#xff0c;Java中上传文件到阿里云OSS1&#xff0c;整合阿里云OSS2&#xff0c;测试上传文件 二&#xff0c;Java中整合阿里云OSS服务指南引言准备工作1. 注册阿里云账号2. 获取Access Key3. 添加依赖 实现OSS客户端1. 初始化OSSClient2. 创建Bucket3. 上传文件4.…...

linux c 递归锁的介绍

递归锁的递归特性确实只是对于持有锁的线程。当一个线程获取了递归锁后&#xff0c;它可以多次重复获取该锁&#xff0c;而不会导致自身阻塞或死锁。这是递归锁的重要特点&#xff0c;它允许同一个线程在已经持有锁的情况下&#xff0c;再次获取相同的锁。 然而&#xff0c;对…...

React好用的组件库有哪些

React好用的组件库有很多&#xff0c;它们各自具有不同的特点和优势&#xff0c;适用于不同的开发场景和需求。以下是一些受欢迎的React组件库及其特点&#xff1a; Material-UI&#xff08;现更名为MUI&#xff09; 特点&#xff1a;这是一个开源的React组件库&#xff0c;实…...

简单快捷!Yarn的安装与使用指南

Yarn 是由 Facebook (现 Meta) 开发的包管理工具。 今天&#xff0c;我将介绍如何使用 Yarn。 目录 Yarn 的官方网站 关于安装 版本确认 开始一个新项目&#xff08;创建 package.json 文件&#xff09; 安装软件包 升级包 运行脚本 执行包的命令 卸载包 总结 Yarn 的…...

【Django】前端技术-网页样式表CSS

文章目录 一、申明规则CSS的导入方式行内样式内部样式外部样式 二、CSS的选择器1. 基本选择器标签选择器&#xff1a; 选择一类标签 标签{}类选择器 class&#xff1a; 选择所有class属性一致的表情&#xff0c;跨标签.类名{}ID选择器&#xff1a;全局唯一 #id名{} 2.层次选择器…...

openssl req 详解

一、openssl req 该命令用于创建和处理PKCS#10格式的证书请求&#xff08;certificate requests CSRs&#xff09;&#xff0c;也可以用来创建自签名证书&#xff08; self-signed certificates&#xff09;来当作根证书&#xff08;root CAs&#xff09;使用 -new 该选项用来…...

mysql各种锁总结

mysql全局锁 读锁&#xff08;共享锁&#xff09; 阻止其他用户更新&#xff0c;但允许他们读取数据。 写锁&#xff08;排他锁&#xff09; 阻止其他用户读取和更新数据。 全局锁场景&#xff1a;进行数据库备份 数据库备份 背景&#xff1a;备份数据肯定要保证数据一致…...

SpringSecurity--DelegatingFilterProxy工作流程

什么是 DelegatingFilterProxy&#xff1f; DelegatingFilterProxy 是 Spring 提供的一个特殊的过滤器&#xff0c;它起到了桥梁的作用&#xff0c;可以让你在 Spring 容器中管理 Servlet 容器中的过滤器。 为什么需要 DelegatingFilterProxy&#xff1f; 通常情况下&#x…...

GitHub每日最火火火项目(7.27)

1. 项目名称&#xff1a;meta - llama / llama3 项目介绍&#xff1a;这是 Meta Llama 3 的官方 GitHub 站点。目前尚不清楚该项目的具体功能和特点&#xff0c;但从名称推测&#xff0c;可能与 Llama 3 模型相关&#xff0c;或许涉及到模型的开发、训练或应用等方面。 项目地…...

git 学习总结

文章目录 一、 git 基础操作1、工作区2、暂存区3、本地仓库4、远程仓库 二、git 的本质三、分支git 命令总结 作者: baron 一、 git 基础操作 如图所示 git 总共有几个区域 工作区, 暂存区, 本地仓库, 远程仓库. 1、工作区 存放项目代码的地方&#xff0c;他有两种状态 Unm…...

《如何找到自己想做的事》

Arouse Enthusiasm, Give Scope to Skill, Explore The Essence *摘其两纸 我喜欢打篮球&#xff0c;并不是我真的喜欢这项运动&#xff0c;而是我喜欢团队竞技。我喜欢看书&#xff0c;并不是我真喜欢阅读&#xff0c;而是我想要了解世界运行逻辑。寻找热爱&#xff0c;探寻本…...

Vue中el的两种写法

大家好我是前端寄术区博主PleaSure乐事。今天了解到了Vue当中有关el的两种写法&#xff0c;记录下来与大家分享&#xff0c;希望对大家有所帮助。 方法一 解释 第一种方法我们直接用new创建并初始化一个新的 Vue 实例&#xff0c;并定义了 Vue 实例的数据对象&#xff0c;在给…...

ELK安装(Elasticsearch+Logstash+Kibana+Filebeat)

一、简介 1.1、软件简介 ELK其实是Elasticsearch&#xff0c;Logstash 和 Kibana三个产品的首字母缩写&#xff0c;这三款都是开源产品。 1.1.1、Elasticsearch简介 Elasticsearch 是一个分布式、高扩展、高实时的搜索与数据分析引擎。它能很方便的使大量数据具有搜索、分析…...

VScode使用Github Copilot插件时出现read ECONNREST问题的解决方法

文章目录 read ECONNREST查看是否仍是 Copilot 会员查看控制台输出网络连接问题浏览器设置问题笔者的话 read ECONNREST 最近使用 Copilot 时一直出现 read ECONNREST 问题&#xff0c;这个表示连接被对方重置了&#xff0c;就是说在读取数据时连接被关闭。 我首先怀疑是不是…...

充电桩浪涌保护方案—保障充电设施安全稳定运行的关键

在当今新能源汽车蓬勃发展的时代&#xff0c;充电桩作为电动汽车的“加油站”&#xff0c;其重要性不言而喻。然而&#xff0c;由于其复杂的电气环境和暴露于户外的特点&#xff0c;充电桩容易受到浪涌的影响。浪涌可能来自雷电、电网故障、大功率设备的启停等&#xff0c;对充…...

Python包管理工具pip

1、安装pip cmd管理员模式打开控制台 python -m pip install --upgrade pip 2、添加pip环境变量 pip 路径 C:\Users\1\AppData\Local\Programs\Python\Python312\Scripts...

最全国内13家DNS分享 解决网页被恶意跳转或无法打开问题

腾讯 DNS (DNSPod) 腾讯 DNS 是由 DNSPod 提供的公共免费 DNS 服务。DNSPod 已被腾讯收购&#xff0c;现在属于腾讯公司所有。该 DNS 服务稳定性和连通性良好&#xff0c;经测试在海外也可以使用。 DNSPod 提供了 IPv4、IPv6 DNS 和 DoT/DoH 服务。 IPv4 地址: 119.29.29.29…...

最新站长工具箱源码,拥有几百个功能,安装教程

最新站长工具箱源码&#xff0c;拥有几百个功能&#xff0c;安装教程 在 Docker 上运行 docker run -e LAFREGIONCN -e APPLANGzh_CN --name my-miaoda -v ~/.miaoda-docker:/root/.miaoda -d -p 0.0.0.0:39899:39899 codegentoolbox/laftools-linux-x64:latestNOTE: 默认端…...

【算法/训练】:动态规划(线性DP)

一、路径类 1. 字母收集 思路&#xff1a; 1、预处理 对输入的字符矩阵我们按照要求将其转换为数字分数&#xff0c;由于只能往下和往右走&#xff0c;因此走到&#xff08;i&#xff0c;j&#xff09;的位置要就是从&#xff08;i - 1&#xff0c; j&#xff09;往下走&#…...

计算巨头 Azure、AWS 和 GCP 的比较

云计算领域由三大主要参与者主导&#xff1a;Microsoft Azure、Amazon Web Services (AWS) 和 Google Cloud Platform (GCP)。每个平台都为希望利用云提供基础设施、平台服务等的企业提供强大的功能。在本文中&#xff0c;我们将深入探讨这些平台之间的差异&#xff0c;重点关注…...

Thinkphp5跨域问题常见的处理方法

在ThinkPHP5中&#xff0c;处理跨域问题通常涉及配置中间件或直接在控制器中设置响应头。以下是几种常见的解决跨域问题的方法&#xff1a; 1. 使用中间件处理跨域 你可以创建一个中间件来专门处理跨域请求。这个中间件会检查请求的来源&#xff0c;并设置相应的响应头来允许…...

Matlab编程资源库(9)数据插值与曲线拟合

一、一维数据插值 在MATLAB中&#xff0c;实现这些插值的函数是interp1&#xff0c;其调用格式为&#xff1a; Y1interp1(X,Y,X1,method) 函数根据X,Y的值&#xff0c;计算函数在X1处的值。X,Y是两个等长的已知向量&#xff0c;分别描述采样点和样本值&#xff0c;X1是一个向量…...

matplotlib的科研绘图辅助

matplotlib的科研绘图辅助 趁着暑假&#xff0c;与和鲸科技合作了一个python绘图的教程&#xff0c;作为暑期夏令营的一小部分&#xff0c;主要内容是介绍如何使用matplotlib、pandas、seaborn和plotnine进行医学科研绘图&#xff0c;感兴趣的可以通过如下地址进行访问&#x…...

C++内存管理(候捷)第五讲 笔记

GNU C对allocators的描述 new_allocator 和malloc_allocator&#xff0c;它们都没有特别的动作&#xff0c;无非底部调用operator new和malloc。它们没有用内存池 区别&#xff1a;::operator new是可重载的 智能型的allocator&#xff0c;使用内存池&#xff0c;分一大块然后…...